
June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

GENETIC PROGRAMMING WITH LINEAR REPRESENTATION
A SURVEY

MIHAI OLTEAN, CRINA GROŞAN, LAURA DIOŞAN, CRISTINA MIHĂILĂ∗

{moltean,cgrosan,lauras,aneta}@cs.ubbcluj.ro

Received (Day Month Year)
Revised (Day Month Year)
Accepted (25 June 2008)

Genetic Programming (GP) is an automated method for creating computer programs
starting from a high-level description of the problem to be solved. Many variants of GP
have been proposed in the recent years. In this paper we are reviewing the main GP
variants with linear representation. Namely, Linear Genetic Programming, Gene Expres-
sion Programming, Multi Expression Programming, Grammatical Evolution, Cartesian
Genetic Programming and Stack-Based Genetic Programming. A complete description is
provided for each method. The set of applications where the methods have been applied
and several Internet sites with more information about them are also given.

Keywords: Genetic Programming, Linear Genetic Programming, Gene Expression Pro-
gramming, Multi Expression Programming, Grammatical Evolution, Cartesian Genetic
Programming, Stack-Based Genetic Programming

1. Introduction

Genetic Programming is widely known as the technique which writes computer pro-
grams. Since the term of GP was actually coined many variants of the standard GP
have been proposed. Their aims were various: simpler implementation, higher speed,
smaller memory requirements, the capability of working with particular hardware
architectures etc. Another motivation is given by the problems where some repre-
sentations work better than the others1,2,3.

Among these variants a special place is taken by those techniques which have
a linear representation of solutions. This basically means that we manipulate the
chromosomes, encoding computer programs, in the same manner as we manipulate
string-based chromosomes, even if these computer programs have a tree or graph-
like execution flow on a normal computer.

Linear encoding of computer programs means that we usually work with arrays
of fixed or variable lengths. Specifically:

(1) we generate arrays of instructions, having a particular meaning,

∗Department of Computer Science, Faculty of Mathematics and Computer Science, Babeş-Bolyai
University, Kogălniceanu, 1, Cluj-Napoca, 400 084, România

1



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

2 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

(2) we recombine them by using string-based crossover operators such as those
from binary encoding (such as one-cutting point, two cutting points, uniform
recombination etc.)

(3) we mutate them using operators inspired from the binary encoding or from
other representations

This paper performs a review of the most significant GP variants which en-
code computer programs in linear form. The techniques described in this paper
are: Linear Genetic Programming4, Gene Expression Programming5, Multi Expres-
sion Programming6, Grammatical Evolution7, Cartesian Genetic Programming8

and Stack-Based Genetic Programming9.
The following elements are present in the description of each technique:

(1) representation - the way in which a computer program is encoded into a chro-
mosome,

(2) initialization - the way in which a chromosome is (sometime randomly) gener-
ated,

(3) genetic operators - the way in which variation is introduced in the population,
(4) main algorithm - the strategy which guides the search process,
(5) strengths and weaknesses - the benefits and the difficulties that a researcher

or practitioners will meet when using a particular technique. This is a crucial
section intended to help the reader choose one technique instead of another
depending on the task being solved,

(6) applications - a set of problems where a particular technique has been applied,
(7) on-line resources - several web sites where the reader can find more information

(possibly the source code) about the considered techniques.

The motivation for writing this survey was raised by the lack of a unitary pre-
sentation of all GP variants in the literature. Some authors used long descriptions
for presenting their method in a new light, totally different from what was proposed
before. These kinds of presentations can confuse the reader, making him ignorant
in the vast field of Genetic Programming. Our second motivation, beside a unitary
presentation, is to use this survey as a starting point for assessing the true perfor-
mance of each GP variant. Each method has some weaknesses (as we shown later in
this paper) and these aspects make them vulnerable when solving some problems.
By making a complete comparison - non-numerical and numerical - the true poten-
tial of each method can be revealed, making much easier the task of selecting them
when solving problems. Here, we focus on a theoretical comparison between meth-
ods. Numerical experiments are planned for the future, due to numerous problems
encountered in that direction (as stated in our last section of this paper).

The paper is organized as follows: Section 2 contains five preparatory steps in
order to solve a given problem by using a GP algorithm. Sections 3 - 8 describe
the best known GP variants and their applications (see Section 9). Conclusions and
further work directions are suggested in Section 10.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 3

2. Prerequisites

Five major preparatory steps10 must be specified in order to apply a GP technique
to a particular problem:

(1) the set T of terminals (e.g. the independent variables of the problem, zero-
argument functions and random constants)

(2) the set F of primitive functions,
(3) the fitness measure (for explicitly or implicitly measuring the quality of indi-

viduals in the population),
(4) certain parameters for controlling the run
(5) the termination criterion and the method for designating the result of the run.

These preparatory steps are problem-dependent so they must be specified for
each particular problem by a human user. In this paper we will use regression
and classification problems in order to illustrate the way in which the described
GP techniques can be applied. In both cases the problem consists in finding a
mathematical expression.

The quality of a GP individual, the fitness measure, is usually computed by
using a set of fitness cases11,12.

We consider a problem with n inputs: x1, x2, . . . xn and one output f . Each
fitness case is given as a one-dimensional array of (n + 1) values:

vk
1 , vk

2 , ..., vk
n, fk

where vk
j is the value of the jth attribute, xj , with j = 1,m, in the kth fitness case

and fk is the output for the kth fitness case (k = 1, m).

3. Linear Genetic Programming

Linear Genetic Programming (LGP)4,13,14,1,2 uses a linear representation of com-
puter programs. LGP evolves programs written in an imperative language (like C ),
rather than the tree-based expressions as in the case of standard GP11.

LGP is a variant of Automatic Induction of Machine Code - Genetic Program-
ming (AIM-GP)15,16 - method that was originally referred to as Compiling Genetic
Programming System (CGPS)17. Note that the use of linear bit sequences in GP
goes back to Cramer and his JB language18 and other works.

In AIMGP individuals are manipulated as binary machine code (which is the
main difference to the LGP approach where programs are represented in an imper-
ative language) in memory and are executed directly without passing an interpreter
during the fitness calculation. This results in a significant speedup compared to
interpreting systems.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

4 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

3.1. LGP model

3.1.1. Representation

An LGP individual is represented by a variable-length sequence of simple C lan-
guage instructions. Instructions operate on one or two indexed variables v (also
called registers) or on constants c from predefined sets. The result is assigned to
a destination register. Single operations may be skipped by preceding conditional
branches, e.g., if (rj > rk). Some examples of LGP instructions are given below:

• vi = vj ∗ vk // instruction operating on two registers
• vi = vj ∗ c // instruction operating on one register and one constant
• vi = sin(vj) // instruction operating on one register

Example. An example of the LGP program is the following:

void LGP program (double v[11])
{

. . .

v[8] = v[0]− 10;
v[6] = v[2] ∗ v[0];
v[5] = v[8] ∗ 7;
v[4] = v[2]− v[0];
v[10] = v[1]/v[4];
v[3] = sin(v[1]);
v[1] = v[8]− v[6];
v[7] = v[10] ∗ v[3];
v[9] = v[0] + v[7];
v[2] = v[7] + 3;
. . .

}

The initial values for the variables v[0] ... v[10] are set to the value of inputs
or to some numerical constants. After executing the program encoded into an LGP
chromosome the output will be stored into a destination register. This register is
usually chosen at the beginning of the search process and is kept unchanged until
the end.

It can be seen that not all the variables (registers) are effective (contribute to
the final result). The usefulness of each register depends on the register chosen to
provide the output of the program.

Suppose that in the previously described chromosome the output is provided
by the register v[9]. The last effective instruction (that modifies this register) is
v[9] = v[0] ∗ v[3]. Now we have to search for the previous instructions that have
changed the value of registers v[0] and v[7]. v[0] has not been changed, so we look
for v[7]. This instruction is v[7] = v[10] ∗ v[3]. The process continues until we have



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 5

found the effective code for this program:

void LGP effective program (double v[11])
{

. . .

v[4] = v[2]− v[0];
v[10] = v[1]/v[4];
v[3] = sin(v[1]);
v[7] = v[10] ∗ v[3];
v[9] = v[0] + v[7];
. . .

}

The size of the effective code varies between 0 and the number of instructions
in the LGP chromosome.

A chromosome is a string of instructions. Each instruction is encoded as

(op index, out register, in register1, in register2)

where op index is an integer that represent an index from the set of functions, while
out register, in register1 and in register2 represent indexes from the set of regis-
ters (in our example a number between 0 an 10). The corresponding chromosome
for our example program is:

C = ((1, 4, 2, 0), (3, 10, 1, 4), (4, 3, 1), (2, 7, 10, 3), (0, 9, 0, 7))

or

C = ((−, v[4], v[2], v[0]), (/, v[10], v[1], v[4]), (sin, v[3], v[1]),

(∗, v[7], v[10], v[3]), (+, v[9], v[0], v[7]))

If we consider that the first three registers contain the values a, b and c, then
the chromosome C encodes the expression a + b

c−a ∗ sin(b).

3.1.2. Initialization

The initial population of a LGP run is generated randomly. An upper bound for
the initial program length has to be defined. The lower bound may be equal to
the absolute minimum length of a program (that is one instruction). A program
is created so that its length is chosen randomly from this predefined range with
a uniform probability. Each symbol in the program is randomly chosen from the
corresponding set.

There is a trade-off to be addressed when choosing upper and lower bounds of
program length: On the one hand, it is not recommended to initialize exceedingly
long programs. This may reduce their variability significantly in the course of the



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

6 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

evolutionary process. Besides, the smaller the initial programs are, the more thor-
ough an exploration of the search space can be performed at the beginning of a run.
On the other hand, the average initial length of programs should not be too small,
because a sufficient diversity of the initial genetic material is necessary, especially
in smaller populations or if crossover dominates variation2.

3.1.3. Genetic operators

Variation operators used in conjunction with LGP are crossover and mutation. Both
crossover and mutation must handle variable length chromosomes.
Crossover. By crossover, continuous sequences of instructions are selected and
exchanged between parents. LGP uses two-point string crossover4. A segment of
random starting position and random length is selected in both parents and ex-
changed between them. If one of the resulting children exceeds the maximum length,
crossover is abandoned and restarted by exchanging equally sized segments.
Mutation. Two types of mutation are used: micro mutation and macro mutation.
By micro mutation, an operand or an operator of an instruction is changed. Macro
mutation inserts or deletes a random instruction. As an effect of macro mutation,
the size of the LGP chromosome is modified.

3.1.4. Algorithm

LGP uses a modified steady-state algorithm.

Algorithm 1 LGP Algorithm
@ Generate the initial population.
while not stop condition do

@ Four individuals are randomly selected from the current population
@ The best two of them are considered the winners of the tournament and will
act as parents
@ The parents are recombined
@ The offspring are mutated and then they replace the losers of the tournament

end while
@ Output S as the best solution (individual) found

3.2. LGP strengths and weaknesses

3.2.1. Strengths

Evolving programs in a low-level language allows us to run these programs directly
on the computer processor, thus avoiding the need of an interpreter. Computer
programs can be evolved very quickly in this way.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 7

LGP can be easily used to solve problems with multiple outputs (by choosing
multiple registers to provide the solution).

3.2.2. Weaknesses

An important LGP parameter is the number of registers (or variables) used by
a chromosome. This number is usually equal to the number of attributes of the
problem. If the problem has only one attribute, it is impossible to obtain a complex
expression such as the quartic polynomial11. In that case, we have to use several sup-
plementary registers (variables). The number of supplementary registers (variables)
depends on the complexity of the expression being discovered. An inappropriate
choice of the number of registers(variables) may lead to poor results.

3.3. LGP on-line resources

More information about LGP can be found on the following web pages:

• Register Machine Learning Technologies http://www.aimlearning.com – last
access June 6, 2008

• Peter Nordin’s home page http://fy.chalmers.se/~pnordin – last access
June 6, 2008

• Wolfgang Banzhaf’s home page http://www.cs.mun.ca/~banzhaf – last access
June 6, 2008

• Markus Brameier’s home page http://www.daimi.au.dk/~brameier – last ac-
cess June 6, 2008

4. Gene Expression Programming

Gene Expression Programming (GEP)5 is a GP variant, relying on linear chromo-
somes. A GEP chromosome is composed of genes containing terminal and function
symbols. Several dedicated operators such as crossover, mutation and transposition
modify GEP chromosomes.

4.1. GEP model

4.1.1. Representation

GEP individuals19,5 are encoded as linear chromosomes which are expressed or
translated into expression trees (branched entities). For a better understanding of
the method we will start with an example showing breadth-first translation of a
tree.

Example. Consider the tree depicted in Figure 1. By breadth-first parsing of the
tree depicted in Figure 1 we obtain the string +a ∗ /Sb− bca, where the S symbol
stands for the sin operator. By decoding GEP chromosomes one actually has to
perform a breadth-first parsing.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

8 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

+

a *

/ sin

b - b

c a

Fig. 1. A tree encoding the expression a + b/(c− a) ∗ sin(b).

Functionally speaking, GEP genes are composed of a head and a tail. The head
contains both functions and terminal symbols. The tail contains only terminal sym-
bols. The head length, h, is chosen by the user for each problem. The tail length, t,
is calculated using the formula: t = (n− 1) ∗ h + 1, where n is the maximum arity
of functions.

Let us consider a gene made up of symbols in the sets F and T , where F =
{+,−, ∗, /, S} and T = {a, b, c}.

In this case maximum arity is n = 2. Because only the head can contain functions
we must choose at least h = 7. If h is 7 then t will be 8, and the length of the gene
is 7 + 8 = 15. Such a gene is given below (where symbol S stands for the sin

operator): C = +a ∗ /Sb− bcacabbc.

The expression encoded by the gene C is: E = a + b/(c − a) ∗ sin(b) and it
represents the phenotypic transcription of a chromosome having C as its unique
gene. The last five elements of this gene (cabbc) are not used.

Usually, a GEP gene is not entirely used for phenotypic transcription. If the
first symbol in the gene is a terminal symbol, the expression tree consists of a single
node. If all the symbols in the head are function symbols, the expression tree uses
all the symbols of the gene.

GEP genes may be linked by a function symbol in order to obtain a fully func-
tional chromosome. In the current version of GEP, the linking functions for alge-
braic expressions are addition and multiplication. A single type of function is used
for linking multiple genes.

This seems to be enough in some situations5. However, generally, it is not a good
idea to assume that the genes may be linked either by addition or by multiplication.

4.1.2. Initialization

GEP chromosomes are initialized randomly but they must fulfill the previously de-
scribed rules regarding the symbols that can be contained in each of the two parts
of a chromosome. Thus, the only restriction for a chromosome is that it’s tail must
contain only terminal symbols and the initialization process must obey this rule.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 9

4.1.3. Genetic operators

The GEP technique uses several operators such as crossover, mutation and trans-
position in order to obtain new individuals.
Crossover. In GEP there are three kinds of recombination: one-point, two-point
and gene recombination. In all the cases, two parent chromosomes are randomly
chosen and paired to exchange some material between them.

The one-point and two-point recombination operators in the GEP representation
are analogous to the corresponding binary representation operator. Two parents and
one, respectively two, cutting-point(s) are chosen. Two offsprings are obtained from
the parents, by exchanging genetic material according to the cutting-point(s).

In gene recombination, an entire gene is exchanged during crossover. The ex-
changed genes are randomly chosen and they need to have occupied the same posi-
tion in the parent chromosomes. The newly created individuals contain genes from
both parents. Note that with this kind of recombination, similar genes can be ex-
changed but, most of the time, the exchanged genes are very different and new
material is introduced in the population.

Mutation. Mutations can occur anywhere in the chromosome. However, the struc-
tural organization of chromosomes must remain intact. In the head, any symbol can
change into another (function or terminal); in the tail, terminals can only change
into terminals. In this way, the structural organization of the chromosomes is main-
tained, and all the new individuals produced by mutation are structurally correct
programs.

Other GEP operators. Some GEP variants use transposition as one of the genetic
operators in order to introduce variety in the population. The transposable elements
of the GEP chromosome are fragments of the genome that can be activated and jump
to another place in the chromosome5. In GEP there are three kinds of transposable
elements:

(1) short fragments with a function or terminal in the first position that transpose
to the head of genes except for the root,

(2) short fragments with a function in the first position that transpose to the root
of genes,

(3) entire genes that transpose to the beginning of the chromosome.

4.1.4. Algorithm

GEP uses a generational algorithm.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

10 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

Algorithm 2 GEP Algorithm
@ Generate the initial population.
while not stop condition do

@ A fixed number of the best individuals enter the next generation (elitism)
@ Fill the mating pool by using tournament selection
@ Pair randomly the individuals from the mating pool and recombine them
@ Mutate the offspring
@ Enter the new individuals into the next generation

end while
@ Output S as the best solution (individual) found

4.2. GEP strengths and weaknesses

4.2.1. Strengths

Dividing the GEP chromosome into two parts (head and tail), each of them con-
taining specific symbols, provides an original and very efficient way of encoding
syntactically correct computer programs. No other corrections are required in order
to obtain a valid computer program. This is different from other techniques such as
grammatical evolution (see Section 6) which allows chromosomes encoding invalid
computer programs in the system.

4.2.2. Weaknesses

GEP, as it was described in the original paper, uses a multigenic representation.
There are some problems regarding multigenic chromosomes. Generally, it is not a
good idea to assume that the genes may be linked either by addition or by multipli-
cation. Providing a particular linking operator means providing partial information
to the expression that is being discovered. However, if other additional operators
(such as −, /) are used as linking operators, then the complexity of the problem
substantially grows (since the problem of determining how to mix these operators
with the genes is as difficult as the initial problem).

Furthermore, the number of genes in the GEP multigenic chromosome raises a
problem. As it can be seen in5, the success rate of GEP increases with the number of
genes in the chromosome. However, after a certain value, the success rate decreases
if the number of genes in the chromosome is increased. This happens because we
cannot force a complex chromosome to encode a less complex expression.

A large part of the chromosome is unused if the target expression is short and the
head length is large. Note that this problem usually arises in systems that employ
chromosomes with a fixed length.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 11

4.3. GEP on-line resources

More information about Gene Expression Programming can be found on the fol-
lowing web pages:

• Gene Expression Programming website, http://www.gepsoft.com – last access
June 6, 2008

• Heitor Lopes’s home page
http://www.cpgei.cefetpr.br/~hslopes/index-english.html – last

access June 6, 2008
• Xin Li’s home page http://www.cs.uic.edu/~xli1/ – last access June 6, 2008
• GEP in C#

http://www.c-sharpcorner.com/Code/2002/Nov/GEPAlgorithm.asp –
last access June 6, 2008

5. Multi Expression Programming

Multi Expression Programming (MEP)20,6,21,22 is a GP variant that uses a lin-
ear representation of chromosomes. MEP individuals are strings of genes encoding
complex computer programs.

When MEP individuals encode expressions, their representation is similar to the
way in which compilers translate C or Pascal expressions into machine code24.

A unique MEP feature is the ability of selecting the best gene to provide the
output for the chromosome. This is different from other GP techniques which employ
a fixed gene for output. A similar situation is provided by Cartesian GP (see Section
7) where the outputs are evolved in the same manner as all the other symbols in
the chromosome.

A single parsing of the chromosome can perform evaluation of the expressions
encoded into a MEP individual.

The offspring obtained by crossover and mutation are always syntactically cor-
rect MEP individuals (computer programs). Thus, no extra processing for repairing
newly obtained individuals is needed.

5.1. MEP model

5.1.1. Representation

MEP genes are (represented by) substrings of variable length. The number of genes
per chromosome is constant. This number defines the length of the chromosome.
Each gene encodes a terminal or a function symbol. A gene that encodes a function
includes pointers towards the function arguments. Function arguments always have
indices of lower values than the position of the function itself in the chromosome.

The MEP representation ensures that no cycle arises while the chromosome is de-
coded (phenotypically transcripted). According to the MEP representation scheme,
the first symbol of the chromosome must be a terminal symbol. In this way, only
syntactically correct programs (MEP individuals) are obtained.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

12 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

Example. Consider a representation where the numbers on the left stand for
gene labels. Labels do not belong to the chromosome, as they are provided only for
explanation purposes.

For this example, we use the set of functions: F = {+,−, ∗, /, sin}, and the set
of terminals T = {a, b, c}.

An example of a chromosome C using the sets F and T is given below (it encodes
the expression a + b

c−a ∗ sin b):
1: a

2: b

3: + 1, 2
4: sin(2)
5: c

6: − 5, 1
7: / 2, 3
8: / 2, 6
9: ∗ 8, 4

10: − 7, 8
11: + 1, 9

The maximum number of symbols in the MEP chromosome is given by the
formula:

No of Symbols = (n+1) ∗ (No of Genes – 1) + 1,

where n is the number of arguments of the function with the greatest number of
arguments.

The maximum number of effective symbols is achieved when each gene (except-
ing the first one) encodes a function symbol with the highest number of arguments.
The minimum number of effective symbols is equal to the number of genes and it
is achieved when all the genes encode terminal symbols only.

Translation of the MEP chromosome into a valid computer program is done top-
down. A terminal symbol specifies a simple expression. A function symbol specifies a
complex expression obtained by connecting the operands specified by the argument
positions with the current function symbol.

For instance, genes 1, 2 and 5 in the previous example encode simple expressions
formed by a single terminal symbol. These expressions are:

E1 = a,
E2 = b,
E5 = c,

Gene 3 indicates the operation + on the operands located at positions 1 and 2
of the chromosome. Therefore, gene 3 encodes the expression:

E3 = a + b.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 13

Gene 4 indicates the operation sin on the operand located at position 2 . There-
fore, gene 4 encodes the expression:

E4 = sin(b)

Gene 6 indicates the operation − on the operands located at positions 5 and 1
. Therefore, gene 6 encodes the expression:

E6 = c− a.

Gene 7 indicates the operation / on the operands located at position 2 and 3.
Therefore, this gene encodes the expression:

E7 = b/(a + b).

Gene 8 indicates the operation / on the operands located at position 2 and 6.
Therefore, this gene encodes the expression:

E8 = b/(c− a).

Gene 9 indicates the operation ∗ on the operands located at positions 8 and 4
of the chromosome. Therefore, gene 9 encodes the expression:

E9 = b/(c− a) ∗ sin(b).

Gene 10 indicates the operation − on the operands located at positions 7 and 8
of the chromosome. Therefore, gene 10 encodes the expression:

E10 = b/(a + b)− b/(c− a).

Gene 11 indicates the operation + on the operands located at positions 1 and 9
of the chromosome. Therefore, this gene encodes the expression:

E11 = a + b/(c− a) ∗ sin(b).

There is neither practical nor theoretical evidence that one of these genes is
better than the others. Moreover, Wolpert and McReady25,26 proved that we cannot
use the behavior of the search algorithm up to a certain moment for a particular
test function in order to predict its future behavior on that function. This is why
each MEP chromosome allows any gene to provide the output of the chromosome.

The value of these expressions may be computed by reading the chromosome
top-down. Partial results are computed by Dynamic Programming27 and are stored
in a conventional manner.

The chromosome fitness is usually defined as the fitness of the best expression
encoded by that chromosome. For instance, if we want to solve symbolic regression
problems, the fitness of each sub-expression Ei may be computed using the formula:

fitness(Ei) =
m∑

k=1

∣∣ok
i − fk

∣∣, (1)



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

14 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

where ok
i is the result obtained by the expression Ei for the fitness case k and fk

is the targeted result for the fitness case k. In this case the fitness needs to be
minimized. The fitness of an individual is set to be equal to the lowest fitness of the
expressions encoded in the chromosome:

fitness(C) = min
i

fitness(Ei). (2)

5.1.2. Initialization

There are some restrictions for generating a valid MEP chromosome:

• The first gene of the chromosome must contain a terminal. If we have a function
in the first position, we also need some pointers to some positions with a lower
index. But, there are no other genes above the first gene.

• For all the other genes which encodes functions we have to generate pointers
toward the function arguments. All these pointers must indicate toward genes
which have a lower index than the current gene.

5.1.3. Genetic operators

The search operators used within the MEP algorithm are crossover and mutation.
These search operators preserve the chromosome structure. All the offspring are
syntactically correct expressions.
Crossover. By crossover, two parents are selected and recombined. Several vari-
ants of recombination have been considered for MEP: one-point recombination,
two-point recombination and uniform recombination.

Mutation. Each symbol (terminal, function of function pointer) in the chromo-
some may be the target of the mutation operator. Some symbols in the chromosome
are changed by mutation. In order to preserve the consistency of the chromosome,
its first gene must encode a terminal symbol.

If the current gene encodes a terminal symbol, it may be changed into another
terminal symbol or into a function symbol. In the latter case, the position(s) in-
dicating the function argument(s) is(are) randomly generated. If the current gene
encodes a function, the gene may be mutated into a terminal symbol or into another
function (function symbol and pointers towards arguments).

We may say that the crossover operator occurs between genes and the mutation
operator occurs inside genes.

5.1.4. Algorithm

The standard MEP algorithm uses steady-state evolutionary model28 as its under-
lying mechanism.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 15

Algorithm 3 MEP Algorithm
@ Randomly create the initial population (P (0))
while not stop condition do

@ Select two parents p1 and p2 from the current population
@ Crossover the parents p1 and p2, obtaining the offspring o1 and o2

@ Mutate the offspring o1 and o2

if Fitness(the best offspring) is better than Fitness(the worst individual) then
@ Replace the worst individual with the best offspring

end if
end while
@ Output S as the best solution (individual) found

5.2. MEP strengths and weaknesses

5.2.1. Strengths

The output of a GP chromosome is usually provided by a fixed node. By contrast,
MEP has a dynamic mechanism for selecting the gene which will provide the output.
Namely, the best gene is chosen to represent the chromosome (by supplying the
fitness of the individual). When more than one gene shares the best fitness, the first
detected is chosen to represent the chromosome.

The dynamic-output chromosome has some advantages over the fixed-output
chromosome especially when the complexity of the target expression is not known
(see the numerical experiments). This feature also acts as a provider of variable-
length expressions. Other techniques (such as GE or LGP) employ special genetic
operators (which insert or remove chromosome parts) in order to achieve such a
complex functionality.

The expression encoded in a MEP chromosome may have exponential length
when the chromosome has polynomial length due to code reuse.

5.2.2. Weaknesses

There are problems where the complexity of the MEP decoding process is higher
than the complexity of the GE, GEP, and LGP decoding processes. This situation
usually arises when the set of training data is not a priori known (e.g., when game
strategies are evolved).

5.3. MEP on-line resources

More information about MEP can be found in the following web pages:

• Mihai Oltean’s home page http://www.cs.ubbcluj.ro/~moltean – last access
June 6, 2008

• Crina Groşan’s home page http://www.cs.ubbcluj.ro/~cgrosan – last access
June 6, 2008



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

16 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

• Multi Expression Programming web page http://www.mep.cs.ubbcluj.ro –
last access June 6, 2008

• MEP in C# http://www.c-sharpcorner.com – last access June 6, 2008

6. Grammatical Evolution

Grammatical Evolution(GE)29,30,7 uses Backus - Naur Form (BNF)31 in order to
express computer programs. BNF is a notation that allows a computer program to
be expressed as a grammar. GE chromosomes are binary strings of variable length.
They are converted into integer strings and later into complex computer programs
by using a grammar. This process is briefly depicted into Figure 2.

Binary string

Integer string

Computer program

00001001 00001100 00001100 00000011 00001111

00000000 00000110 00001011 00000000 00000001

a + b / ( c - a ) * sin ( b )

9 12 12 3 15 7 11 4 2 5 0 6 11 0 1 7 12

00001011 00000100 00000010 0000010100000111

00000111 00001100

Fig. 2. A schematic view of the GE decoding process. A GE chromosome is represented as a
binary string which is transformed into an integer string by grouping each set of 8 bits into a
codon. In the final stage, the integer string is decoded into a complex computer program by using
a BNF grammar.

GE is very similar to Genetic Algorithms for Deriving Software (GADS)32. The
GADS genotype is a list of integers representing productions in a syntax. This is
used to generate the phenotype, which is a program in the language defined by the
syntax. Syntactically invalid phenotypes cannot be generated, though there may be
phenotypes with residual nonterminals. GADS can be implemented on a traditional
genetic algorithm.

6.1. GE model

6.1.1. Representation

Each GE individual is a variable length binary string that contains in its codons
(groups of 8 bits) the necessary information for selecting a production rule from a
BNF grammar.

A BNF grammar consists of a terminal and a non-terminal set of symbols, a set
of production rules and a start symbol. Grammar symbols may be re-written, using



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 17

production rules, in other terminal and non-terminal symbols. An example from a
BNF grammar is given by the following production rules7,33:

S ::= expr (0) |
if stmt (1) |

loop (2)

These production rules state that the start symbol S can be replaced (re-written)
by either one of the non-terminals: expr, if -stmt, or by loop.

The grammar is used in a generative process in order to construct a program
by applying the production rules given by the genome, beginning with the starting
symbol of the grammar.

In order to select a GE production rule, the next codon value on the genome is
generated and used in the following formula:

Rule Index = Codon V alue mod Num Rules.

If the next Codon Value is 4, knowing that we have 3 rules to select from, as
in the example above, we get 4 mod 3 = 1. Therefore, S will be replaced with the
non-terminal if-stmt, corresponding to the second production rule.

Beginning from the left side of the genome codon, integer values are generated
and used for selecting rules from the BNF grammar, until one of the following
situations arises:

(i) A complete program is generated. This occurs when all the non-terminals in
the expression being mapped are turned into elements from the terminal set of
the BNF grammar. Some genes might remain unexpressed in some cases.

(ii) The end of the genome is reached, in which case the wrapping operator is
invoked. This means that the following evaluated codon will be the first one
and the evaluation process is restarted from this position. The restarted process
continues until a higher threshold that represents the maximum number of
wrapping events has occurred during the individual mapping process.

In the case that a threshold on the number of wrapping events is exceeded and
that the individual is still incompletely mapped, the mapping process is halted and
the individual is assigned the worst possible fitness value.

Example. Consider the grammar: G = {N,T, S, P}, where the terminal set is:
T = {+,−, ∗, /, sin, (, )} and the nonterminal symbols are: N = {expr, op2, op1}.
The start symbol is S = 〈expr〉. The production rules P are:



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

18 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

〈expr〉 ::= a (0) |
b (1) |
c (2) |

〈expr〉 〈op2〉 〈expr〉 (3) |
(〈expr〉 〈op2〉 〈expr〉) (4) |

〈op1〉 〈expr〉 (5)

〈op2〉 ::= + (0) |
− (1) |
∗ (2) |
/ (3)

〈op1〉 ::= sin (0)

An example of a GE chromosome is the following:

CGE = (00001001 00001100 00001100 00000011 00001111 00000111
00001011 00000100 00000010 00000101 00000000 00000110
00001011 00000000 00000001 00000111 00001100)

.
Translated into integer GE codons, the chromosome is: C∗GE = (9 12 12 3 15 7

11 4 2 5 0 6 11 0 1 7 12). We can now start to translate this chromosome into a
computer program.

The start symbol is S = <expr>. We have six possibilities (productions) to
choose from. In order to make a choice we read the first gene of the chromosome,
which is number 9. This number modulo the number of possibilities will give us the
production to choose. In this case the choice is the fourth production (because the
productions are indexed starting with 0): 9 mod 6 = 3 . We obtain a new string:
〈expr〉 〈op2〉 〈expr〉.

We start again with the first nonterminal symbol, <expr>, and we extract the
second gene of the chromosome in order to see which production to choose. We have
again 6 possibilities and the second gene has value 12. We choose production 12 mod
6 = 0 which is actually the first production. We obtain the string: a 〈op2〉 〈expr〉.

The first nonterminal symbol in this string is 〈op2〉. We have 4 productions for
this symbol and the next gene has value 12. Thus we choose rule 12 mod 4 = 0,
which indicates the first production for the nonterminal symbol 〈op2〉. The newly
obtained string is: a + 〈expr〉.

The next nonterminal is <expr> and we have 6 productions to choose from.
According to the next gene we choose production 3 mod 6 = 3 which is the fourth
production for the current nonterminal. We obtain the string: a+〈expr〉 〈op2〉 〈expr〉.

Next nonterminal to expand is <expr>. We have 6 possibilities and the next
gene which will decide the production has value 15. Thus, we choose the fourth pro-
duction, 15 mod 6 = 3, and we obtain the string: a+〈expr〉 〈op2〉 〈expr〉 〈op2〉 〈expr〉.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 19

Now the next nonterminal symbol is <expr> and next value of gene is 1.
We choose production 1 mod 6 = 1 which is the second one and we obtain:
a + b 〈op2〉 〈expr〉 〈op2〉 〈expr〉.

By applying the same reasoning we succesivelly obtain the following intermedi-
ate expressions:

a + b/ 〈expr〉 〈op2〉 〈expr〉
a + b/(〈expr〉 〈op2〉 〈expr〉) 〈op2〉 〈expr〉
a + b/(c 〈op2〉 〈expr〉) 〈op2〉 〈expr〉
a + b/(c− 〈expr〉) 〈op2〉 〈expr〉
a + b/(c− a) 〈op2〉 〈expr〉
a + b/(c− a) ∗ 〈expr〉
a + b/(c− a) ∗ 〈op1〉 〈expr〉
a + b/(c− a) ∗ sin 〈expr〉

The last nonterminal symbol is 〈expr〉 and the next gene of the GE chromosome
has value 1. In this case we have to choose the second production, for this non-
terminal, which leads to the expression:

E = a + b/(c− a) ∗ sin(b)

Note that in some cases not all the GE genes are used. For instance, in our example
we have two genes which were not used, because the translation process was ended
after using the first 15 genes (no more nonterminals were available for expanding).

The obtained computer program depends on the BNF grammar used for trans-
lation. Different grammars (but with similar purposes) lead to different computer
programs even if the GE chromosome employed is the same.

6.1.2. Initialization

GE chromosomes are binary strings that can be initialized without any restriction.
For each position, we generate a random value (either 0 or 1).

Note that even if the chromosomes are correct they can generate invalid com-
puter programs. However, this fact will be known only after decoding the entire
chromosome.

6.1.3. Genetic operators

Genetic operators employed by GE are similar to those used in conjunction with bi-
nary encoding29. Other two operators: duplicate and prune have been tested within
the GE system7.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

20 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

Crossover. Standard GE crossover is similar to the one cutting point crossover
employed by the binary encoding. This operator implies the selection of two individ-
uals (the parents). Then two cutting points (one in each individual) are randomly
chosen. The segments on the right side of the cutting points are swapped29.

Mutation. Mutation is performed as in the case of binary encoding34. This op-
erator randomly flips some of the bits in a chromosome. Mutation can occur in any
position in a chromosome with a small mutation probability.

Remark. Some algorithms also used as genetic operators duplicate and prune. By
duplication, a randomly chosen sequence of genes is copied into the position of the
last gene of the chromosome. The prune operator is usually applied for reducing the
number of introns (unused genes11) and thus increasing the likelihood of beneficial
crossover. Genes not used in the genotype-phenotype mapping process are discarded
by the prune operator7.

6.1.4. Algorithm

Standard GE algorithm uses steady-state evolutionary model28 as its underlying
mechanism. A generational algorithm was initially used7, but due to its poor per-
formance it was later replaced by a steady-state approach33.

Algorithm 4 GE Algorithm
@ Randomly create the initial population (P (0))
while not stop condition do

@ Select two parents p1 and p2 from the current population
@ Crossover the parents p1 and p2, obtaining the offspring o1 and o2

@ Mutate the offspring o1 and o2

if Fitness(the best offspring) is better than Fitness(the worst individual) then
@ Replace the worst individual with the best offspring

end if
end while
@ Output S as the best solution found

6.2. GE strengths and weaknesses

6.2.1. Strengths

The use of BNF grammars provides a general and a very natural way of evolving
computer programs written in programming languages whose instructions may be



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 21

expressed as BNF rules. In the case of mathematical expressions, their representa-
tion is not limited to a single form (such as infix, prefix, postfix etc) as in the case of
some other GP techniques. The representation can be simply changed by changing
the grammar.

The wrapping operator provides a very original way of translating short chro-
mosomes into very long expressions. Wrapping also provides an efficient way of
avoiding invalid expressions.

6.2.2. Weaknesses

The GE mapping process also has some disadvantages. Wrapping may never end
in some situations. For instance, consider the GGE grammar defined earlier in the
first example. In this case the chromosome C ′GE = 0, 0, 0, 0, 0 cannot be translated
into a valid expression because it does not contain operands. In order to prevent
infinite cycling, a fixed number of wrapping occurrences is allowed. If this threshold
is exceeded the expression obtained is incorrect and the corresponding individual
is considered to be invalid. Several strategies for avoiding the generation of invalid
computer programs due to infinite wrapping have been investigated in35.

6.3. GE on-line resources

More information about Grammatical Evolution can be found on the following web
pages:

• Grammatical Evolution web page, http://www.grammatical-evolution.org
– last access June 6, 2008

• Conor Ryan’s home page, http://www.csis.ul.ie/staff/conorryan – last
access June 6, 2008

• Michael O’Neill’s home page, http://ncra.ucd.ie/members/oneillm.html –
last access June 6, 2008

• John James Collins’s home page, http://www.csis.ul.ie/staff/jjcollins
– last access June 6, 2008

• Maarten Keijzer’s home page, http://www.cs.vu.nl/~mkeijzer – last access
June 6, 2008

• Anthony Brabazon’s home page http://ncra.ucd.ie/members/brabazont.

html – last access June 6, 2008

7. Cartesian Genetic Programming

Cartesian Genetic Programming (CGP)8 is a GP technique that encodes chromo-
somes in graph structures rather than trees like standard GP. The motivation for
this representation is that the graphs are more general than the tree structures,
thus allowing the construction of more complex computer programs8.

Cartesian GP used a graph representation very similar to Poli’s parallel dis-
tributed GP (PDGP)36,37,38,39,40.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

22 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

7.1. CGP model

7.1.1. Representation

CGP is Cartesian in the sense that the graph nodes are represented in a Carte-
sian coordinate system. This representation was chosen due to the node connection
mechanism, which is similar to the GP mechanism. A CGP node contains a func-
tion symbol and pointers toward nodes representing function parameters. Each CGP
node has an output that may be used as an input for another node.

A sketch of a CGP node is depicted in Figure 3. A CGP program is a set of
interconnected nodes.

.

Connection
1

Connection
n

.

.

.

Node number

Function

Fig. 3. A CGP node. Node number is the number (index) of the current node. The Function
specifies the operation performed by the current node. Connection1 ... Connectionn are the in-
dexes of the nodes providing input for the function of the current node. The function encoded by
this node cannot have more than n arguments because the number of connections to each nodes
is n. If the function has less arguments than this maximal value (e.g. there are 2 connections and
the encoded function is sin) only the first argument(s) (starting with Connection1) are taken into
account.

Example. An example of a CGP program is depicted in Figure 4. This program
is interpreted as follows: inputs labeled from 0 to 2 are depicted in the left side
of the picture. The output of the program is provided by the output of node 13
(as shown in the right side of picture). In order to obtain the set of nodes, which
are useful in this architecture, we have to start with node 13, which provides the
result of this program. The input 0 and node 11 provide the arguments for the
function encoded in this node. We move to node 11 whose inputs are provided by
nodes 6 and 8. Inputs of node 6 are provided by nodes 1 and 4 while node 8 is
connected to inputs 1 and 0. Node 4 is connected to inputs 2 and 0. In this way,
we have obtained the set of nodes, which are used by the program encoded in the
chromosome depicted in Figure 4. Not all the other nodes are used for computing
the output of this program.

Each CGP program (graph) is defined by several parameters:

• number of rows - nr,
• number of columns - nc,
• number of inputs - ni,
• number of outputs - no,
• number of functions - nf ,
• nodes interconnectivity - l.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 23

1

2

/
3

2

0
4

0

1

8.

5

1

4
6

4

3
7

1

5

sin.
8

1

8

sin.

9

0

3
10

6

8
11

10

7
12

0

11
13

4

6
14

0

1

2

13

/

-

*

+

/

-

*

+

/*

Fig. 4. A CGP program with 3x4 architecture. The program has 3 inputs, 1 output and 5 functions
(+, −, ∗, /, sin). The inputs labeled from 0 to 2 are placed on the left side of the picture. The
output of the program is provided by node 13 (given in the right side of the picture) which is
also subject to evolution. The bold squares represent connected nodes which have influence to the
output of the program. All the other nodes are unused.

The nodes interconnectivity is defined as being the number of the previous
columns of cells that may have their outputs connected to a node in the current
column (the primary inputs are treated as node outputs). This parameter is very
important and defines how far two connected nodes can be in the matrix. If nodes’
interconnectivity is equal to 1, each node can be connected only with nodes in the
previous column. If nodes interconnectivity is equal to the number of rows, we can
have a node connected to any other node in the previous columns.

The CGP chromosomes are represented, within the computer memory, as arrays
of integer values. In order to achieve this we first need to label each function with
an integer value (+ = 0, − = 1, ∗ = 2, / = 3, sin = 4) because we want to work
with integer strings only.

The CGP chromosomes are encoded as strings by reading the graph columns
top-down and printing the input nodes and the function symbol for each node. The
index of the node (which is given in the bottom-right side of a node) is not printed
because this information does not help the search process. Thus, for each node, we
print the following information:

Connection1, Connection2 ... Connectionn Function Label.

The CGP chromosome depicted in Figure 4 is encoded as:
C = (1, 2, 3, 2,0,1, 0, 1, 2, 1,4,3, 4, 3, 0, 1,5,4, 1, 8, 4, 0, 3, 1, 6,8,2, 10, 7, 2,

0,11,0, 4, 6, 3, 13)
Nodes used by the program are written in bold, otherwise they are written in

normal font. The last value in this array is the index of the node that provides the
output of the program.

Genetic operators will modify these genes (providing the output) as all other
genes.

7.1.2. Initialization

The genes of a CGP chromosome are randomly initialized, but they are subject to
several constraints which ensure the generation of a valid chromosome.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

24 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

7.1.3. Genetic operators

String genetic operators can be used within the CGP system. Nodes supplying the
outputs of the entire program (see the right side of Figure 4) are not fixed as they
may also be subject to genetic operators.
Mutation. The mutation operator requires some special conditions (see the ini-
tialization restrictions) to be met. By mutation, some symbols in the current CGP
chromosome are modified. Mutation consists of randomly changing one of the in-
teger values in the CGP string of the genotype. Only one value is changed per
mutation. A mutation can modify the node function, the node input or the connec-
tions in a gene. Since only a part of the genotype is decoded into the phenotype,
mutations often do not affect the behavior of a cell.

Remark. Although the crossover operator was not used by the CGP technique, it
may be applied without any restrictions.

7.1.4. Algorithm

The CGP algorithm suggested in8 is a simple (1+λ)-Evolution Strategy41 where λ

is usually 4. The algorithm may be described as follows:

Algorithm 5 CGP Algorithm
@ Generate a random solution S.
while not stop condition do

@ Generate λ solutions by mutating S

@ Replace S by the best individual out of the currently existing (1+λ) indi-
viduals

end while
@ Output S as the best solution (individual) found

7.2. CGP strengths and weaknesses

7.2.1. Strengths

Evolving the indexes of the cells which will provide the output for the problem is
an interesting feature which introduces further variety in the chromosome.

In standard GP11 the evolved program has only one output. In CGP it is possible
to have as many outputs as necessary.

7.2.2. Weaknesses

The inappropriate choice for the number of columns required by the CGP chromo-
some might lead to poor results. For instance if the number of columns is set to 1 we



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 25

can have only simple solutions (made up of a single function with its arguments).
This is why the number of columns should be big enough.

7.3. CGP on-line resources

More information about CGP can be found on the following web pages:

• Julian. F. Miller’s home page http://www.elec.york.ac.uk/intsys/users/

jfm7/ – last access June 6, 2008
• Lukás Sekanina’s home page http://www.fit.vutbr.cz/~sekanina/ – last

access June 6, 2008

8. Stack-Based Genetic Programming

Stack-based Genetic programming, introduced by Perkis in9, represents programs
as lists of nodes of functions or terminals that consume their inputs from a stack and
place their outputs on another stack. These implementations, including the early
work of Bruce42, Stoffel43 and later Spector44, do not try to preserve the stack
correctness of the individuals in the population, but rather rely on the evaluation
framework to identify any stack underflow or overflow. In contrast, in GP with
stack-correct (Forth) crossover, introduced by Tchernev in45 and46,47, the crossover
operators manipulate the post order representation of the program tree. Because
the crossover points are chosen to have compatible stack depths, no malformation
is possible. If the initial population is stack-correct (no individuals have underflow,
and the final stack depth equals the desired number of outputs), it is guaranteed
that all individuals produced by using stack-correct crossover will be stack-correct.

8.1. SBGP model

8.1.1. Representation

The programs from a stack-GP system are LISP S-expressions that contain ter-
minals and functions. Unlike the standard GP11, in stack-based GP the functions
receive arguments from a numerical stack and return their result by pushing it on
the stack. Function calls are not nested: programs consist of flat linear sequences of
functions and terminals.

Terminals are simply a class of functions which push preset variables onto the
stack when they are executed.

In stack-GP one additional type of closure constraint must be imposed on the
functions. If the stack does not contain sufficient elements for applying one of func-
tion (with other words, if the stack deep is less than the function arity), then it will
do nothing. In the previous example, the operator + from the third position of the
chromosome will not be executed because the stack contains only one argument.

For instance, the following is an example of a program which encodes the math-
ematical expression a + b/(c− a) ∗ sin(b).



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

26 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

C = ((sin) (a) (+) (b) (c) (a) (-) (/) (b) (sin) (∗) (+))

Chromosome Stack
sina + b c a − / b sin ∗ +
sin a + b c a − / b sin ∗ + a

sin a + b c a − / b sin ∗ + a

sin a + b c a − / b sin ∗ + a, b

sin a + b c a − / b sin ∗ + a, b, c

sin a + b c a − / b sin ∗ + a, b, c, a

sin a + b c a − / b sin ∗ + a, b, c− a

sin a + b c a − / b sin ∗ + a, b/(c− a)
sin a + b c a − / b sin ∗ + a, b/(c− a), b

sin a + b c a − / b sin∗ + a, b/(c− a), sin(b)
sin a + b c a − / b sin ∗ + a, b/(c− a) ∗ sin(b)
sin a + b c a − / b sin ∗ + a + b/(c− a) ∗ sin(b)

The stack is protected from underflow by this constraint; and stack overflow
has not been a problem, and has been limited in practice so far by specifying a
maximum allowable program length9.

Numerical calculations are performed in Reverse Polish Notation (RPN)48,49.
The advantage of RPN in this context is that the parse tree for the calculation is
expressed simply by the order of the functions and terminals in the sequence and
not by a constrained syntax demanding balanced parentheses.

8.1.2. Initialization

Initial individuals are just random sequences of symbols from the function set cho-
sen for the problem: due to the nature of RPN, this is sufficient to generate program
parse trees of varied shapes and depths.

8.1.3. Genetic operators

Since there are no syntactical constraints on the critter sequences, the genetic op-
erators applied on the stack-GP chromosome could be any of those used in a tradi-
tional GA. These string-based genetic operators are applied directly on the linear
programs. The safety of the resulting programs was guaranteed by specifying that
all the functions take their arguments from the stack. The function calls that occur
with too few items on the stack are ignored, doing nothing43.

Therefore, a two-cutting point crossover can be utilized: two points are randomly
picked in each of the parents, and one child sequence is created by inserting the



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 27

sequence enclosed by the points in the father into the space defined by the cutting-
points in the mother chromosome9.

In addition to crossover, one point mutation, which consists of changing some
one function call in the sequence to some other function in the current function set,
can be applied because the stack-GP chromosomes can be treated as strings.

8.2. SBGP strengths and weaknesses

8.2.1. Strengths

The stack is free to accumulate “junk” without effecting fitness: each program con-
tains, along with the code that determines the final result, “introns”, code sequences
that perform calculations which create that stack junk.

The genetic operations of Perkis’s model are performed directly on the linear
program (e.g. string-based crossover). All the functions take their arguments from
the stack. When there are no sufficient items on the stack, the function will do
nothing. This scheme guaranties the safety of the resulting programs and determines
lower computational efforts than were required using traditional S-expression-based
genetic programming9.

8.2.2. Weaknesses

In the stack-GP system there is no mechanism for allowing branching program
execution. There are many problems for which branching execution is not necessary.
But in many problems of planning and strategy the side effects of functions are of
primary importance, and the actual sequence of the program execution is of interest
rather than the final calculated result42.

8.3. SBGP on-line resources

• Lee Spector’s home page http://helios.hampshire.edu/lspector/ – last ac-
cess June 6, 2008

• Samuel Landau’s home page http://samuel.landau.free.fr/index.php.en

– last access June 6, 2008
• Sebastien Picault’s home page http://www2.lifl.fr/~picault/index.html

– last access June 6, 2008

9. Applications

A set of problems where a particular GP technique (LGP, GEP, MEP, GE, CGP
or SBGP) has been applied are presented in Tables 1, 2 and 3.

A key question is which method should be selected when a problem has to be
solved. This is difficult to answer, since all GP variants can be applied to the same
problems. We will still make a comparative discussion over ability to solve problems
with the considered methods:



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

28 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

• Ease of implementation. The source code of LGP, GEP, MEP, CGP and SBGP
are simpler compared to GE because GE needs a grammar interpreter for com-
puting the fitness of an individual. However, if a grammar interpreter is avail-
able (like that one for mathematical expressions, available on the GE website
(see section 6.3)), the source code of GE is very simple being actually like a
steady-state GA with binary encoding.

• Invalid individuals. By allowing invalid individuals, the system will spend pro-
cessor time for performing useless computations. The only GP variant which
allows invalid individuals is GE.

• Low level implementation. By making a machine code implementation we can
get some significant improvements regarding the speed. All techniques can be
implemented at low level, however some of them (LGP, MEP and CGP) have
a special structure for chromosomes which - if implemented in machine-code -
don’t need an interpreter to be evaluated.

• Additional parameters. Some methods require the setting of some special pa-
rameters (expecting population size, number of generations, code length, prob-
abilities for applying genetic operators) to work well: LGP needs to specify
the number of additional registers, multigenic GEP requires to set a linking
symbol to combine genes. Setting these parameters incorrectly might lead to
poor results. Additional experiments are required for setting these parameters
correctly.

• Availability of the source code. According to author’s investigations the code
for all methods is freely available on the internet. Note that for some methods,
the source code might be available only in some particular languages and not
for solving any kind of problems. This is why some active involvement of the
users is required in almost all cases.

10. Conclusions and further work

Several Genetic Programming variants having linear representation have been re-
viewed in this paper. A complete description has been given for each method. In-
dividual representation, genetic operators, the main algorithm and other particular
features have been thoroughly deeply analyzed. For each method we have presented
a set of strengths and weaknesses. This section could be useful helping the reader
to select the appropriate method for a specific application. A list of problems where
these techniques have been applied was also given. Moreover, a set of internet sites
where the reader can find more information about the methods has been given in
the appropriate sections. These sites belong to either the authors of the methods or
to other researchers who have performed a long-term research in that area.

Further work directions will be focused on:

• Comparing all GP variants (not only those with linear representation). As soon
as new variants are invented, the comparison should be updated.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 29

T
a
b
le

1
.

A
p
p
li
ca

ti
o
n
s

o
f
v
a
ri

o
u
s

G
P

te
ch

n
iq

u
es

(1
).

D
o
m

a
in

L
G

P
G

E
P

M
E

P
G

E
C

G
P

S
B

G
P

digitalcircuits,evolv-
ablehardware,robotics

so
lv

in
g

B
o
o
le

a
n

fu
n
ct

io
n
s

(d
ig

it
a
l
ci

rc
u
it

s)

1
4
,1

6
,5

0
5

2
2
,2

3
,5

1
,5

2

5
3
,5

4
,5

5
,5

6

5
7

5
8
,5

9
,6

0
,6

1

6
2
,6

3
,6

4

6
5
,8

3

ro
b
o
t

co
n
tr

o
l
a
n
d

d
es

ig
n

6
6
,6

7
,6

8
,6

9
7
0

7
1

a
u
to

m
a
ti

c
sy

n
th

es
is

o
f

m
ic

ro
-c

o
n
tr

o
ll
er

a
ss

em
-

b
ly

co
d
e

7
2

el
ec

tr
o
n
ic

h
a
rd

w
a
re

fa
u
lt

m
o
n
it

o
ri

n
g

7
3

7
3

7
4

m
o
d
el

in
g

th
e

eq
u
iv

a
le

n
t

ci
rc

u
it

fo
r

el
ec

tr
o
ch

em
ic

a
l

im
p
ed

a
n
ce

sp
ec

tr
o
sc

o
p
y

7
5

d
es

ig
n

o
f
a
n
te

n
a

7
6

regression,
predictionandclassifi-
cation

sy
m

b
o
li
c

re
g
re

ss
io

n
fo

r
a
rt

ifi
ci

a
ll
y

co
n
st

ru
ct

ed
1
3
,1

4
,1

6
,2

1
,7

7
,9

5
5
,2

1
,7

8
,7

9
,8

0
2
1
,2

3
7
,2

1
,2

9
,8

1
,8

2
8
,2

1
,4

0
,7

7
4
3
,6

5
,8

3
,8

4

p
ro

b
le

m
s

m
o
d
el

in
g

el
ec

tr
ic

it
y

d
em

a
n
d

p
re

d
ic

ti
o
n

8
5

p
re

d
ic

ti
n
g

th
e

a
m

o
u
n
t

o
f

g
a
s

em
it

te
d

fr
o
m

co
a
l
fa

ce

8
6

p
re

d
ic

ti
o
n

fo
r

a
rt

ifi
ci

a
ll
y

co
n
st

ru
ct

ed
p
ro

b
le

m
s

1
3

8
7

8
8

8
9

cl
a
ss

ifi
ca

ti
o
n

1
3

1
9
,9

0
,9

1
,9

2
,9

3
5

2
1
,4

0
,9

4
,1

3
7

9
5

neural
and
other
net-
works

d
es

ig
n
in

g
n
eu

ra
l
n
et

w
o
rk

s
9
6

9
7

9
8

P
et

ri
n
et

m
o
d
el

in
g

o
f
h
ig

h
-

o
rd

er
g
en

et
ic

sy
st

em
s

9
9

documentsandimagespro-
cessingtasks

co
m

p
re

ss
io

n
o
f

im
a
g
es

a
n
d

so
u
n
d

1
0
0

p
a
rt

it
io

n
in

g
o
f
im

a
g
es

1
6

9
5

v
is

u
a
l
le

a
rn

in
g

m
et

h
o
d

1
0
1

co
n
st

ru
ct

se
n
te

n
ce

ra
n
k
in

g
fu

n
ct

io
n
s

fo
r

te
x
t

1
0
2
,1

0
3

su
m

m
a
ri

za
ti

o
n

d
es

ig
n
in

g
fr

a
ct

a
l
cu

rv
es

1
0
4

im
a
g
e

fi
lt

er
d
es

ig
n

1
0
5
,1

0
6

im
a
g
e

p
ro

ce
ss

in
g

ta
sk

s
1
0
7

1
0
8

1
0
9

n
a
tu

ra
l

la
n
g
u
a
g
e

re
co

g
n
is

-
er

s

3
9



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

30 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

T
a
b
le

2
.

A
p
p
lica

tio
n
s

o
f
v
a
rio

u
s

G
P

tech
n
iq

u
es

(2
).

D
o
m

a
in

L
G

P
G

E
P

M
E

P
G

E
C

G
P

S
B

G
P

bioinformatics

p
ro

tein
lo

ca
liza

tio
n

1
1
0
,1

1
1

co
n
tro

llin
g

co
m

p
lex

p
h
a
rm

a
co

g
en

o
m

ic
sy

s-
tem

s

1
1
2
,1

1
3

ev
o
lu

tio
n

o
f
d
ev

elo
p
m

en
ta

l
p
ro

g
ra

m
in

a
cell

fo
r

crea
tin

g
m

u
lti-cellu

la
r

o
rg

a
n
ism

s
1
1
4

eu
k
a
ry

o
tic

p
ro

m
o
ter

reco
g
n
itio

n
1
1
5

medical

m
in

in
g

fo
rm

u
la

-sy
n
d
ro

m
e

rela
tio

n
in

tra
d
i-

tio
n
a
l

C
h
in

ese
m

ed
icin

e
1
1
6

cla
ssifi

ca
tio

n
o
f
feta

l
h
ea

rt
ra

te
1
3

1
1
7

a
u
to

m
a
ted

d
etectio

n
o
f
b
rea

st
ca

n
cer

1
1
8

economical

b
u
sin

ess
in

tellig
en

ce
fro

m
w

eb
u
sa

g
e

m
in

in
g

1
1
9

fi
n
a
n
cia

l
m

o
d
elin

g
1
2
0

1
2
0
,1

2
1

1
2
2
,1

2
3
,1

2
4

tim
e-series

m
o
d
elin

g
1
2
5

co
rp

o
ra

te
fa

ilu
re

p
red

ictio
n

1
2
6

m
o
d
elin

g
th

e
co

rp
o
ra

te
b
o
n
d
-issu

er
cred

it
ra

t-
in

g
p
ro

cess
1
2
6

cla
ssifi

ers
fo

r
m

o
d
elin

g
th

e
rela

tio
n
sh

ip
b
e-

tw
een

stra
teg

y
a
n
d

co
rp

o
ra

te
p
erfo

rm
a
n
ce

1
2
7

a
n
ticip

a
tin

g
b
a
n
k
ru

p
tcy

reo
rg

a
n
iza

tio
n

fro
m

ra
w

fi
n
a
n
cia

l
d
a
ta

1
2
8

d
ia

g
n
o
stic

co
rp

o
ra

te
sta

b
ility

1
2
9

b
o
n
d
-issu

er
cred

it
ra

tin
g

1
3
0

ev
o
lv

in
g

tra
d
in

g
ru

les
fo

r
sp

o
t

fo
reig

n
-

ex
ch

a
n
g
e

m
a
rk

ets
1
3
1

co
n
sta

n
t

g
en

era
tio

n
fo

r
th

e
fi
n
a
n
cia

l
d
o
m

a
in

1
3
2

cred
it

cla
ssifi

ca
tio

n
9
4

a
d
a
p
tiv

e
tra

d
in

g
1
3
3



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 31

T
a
b
le

3
.

A
p
p
li
ca

ti
o
n
s

o
f
v
a
ri

o
u
s

G
P

te
ch

n
iq

u
es

(3
).

D
o
m

a
in

L
G

P
G

E
P

M
E

P
G

E
C

G
P

S
B

G
P

others

d
a
ta

a
n
a
ly

si
s

fo
r

re
a
l
w

o
rl

d
p
ro

b
le

m
s

4
,1

4
,1

3
4

1
3
5

2
1

1
3
6
,1

3
7

si
m

u
la

ti
o
n

m
o
d
el

o
f
a

w
a
st

e
in

ci
n
er

a
to

r
1
3
8

in
tr

u
si

o
n

d
et

ec
ti

o
n

1
3
9

1
4
0

w
eb

u
sa

g
e

m
in

in
g

1
4
1

ev
o
lu

ti
o
n

o
f
co

n
cu

rr
en

t
co

n
tr

o
l
so

ft
w

a
re

1
4
2

d
is

cr
im

in
a
ti

o
n

o
f
u
n
ex

p
lo

d
ed

o
rd

o
n
a
n
ce

fr
o
m

cl
u
tt

er
1
4
3

p
re

d
ic

t
a

w
a
st

ew
a
te

r
tr

ea
tm

en
t

p
la

n
t’

s
effl

u
en

t
co

n
ce

n
tr

a
ti

o
n

1
3
8

h
y
b
ri

d
m

u
lt

i-
a
g
en

t
fr

a
m

ew
o
rk

1
4
4

1
4
5
,1

4
6

d
ec

is
io

n
su

p
p
o
rt

sy
st

em
s

1
4
7

1
4
7

1
4
7

b
lo

ck
st

a
ck

in
g

5
1
4
8

tr
a
v
el

in
g

sa
le

sm
a
n

p
ro

b
le

m
1
4
9

fu
n
ct

io
n

m
in

in
g

1
5
0
,1

5
1
,1

5
2

b
a
ck

-c
a
lc

u
la

ti
o
n

o
f
p
a
v
em

en
t

la
y
er

th
ic

k
n
es

s
1
5
3

m
o
d
el

in
g

th
e

d
efl

ec
ti

o
n

b
a
si

n
o
f
fl
ex

ib
le

h
ig

h
w

a
y

p
a
v
em

en
ts

1
5
4

p
la

n
o
n

sh
o
rt

p
a
th

a
v
o
id

in
g

o
b
st

ru
ct

io
n
s

1
5
5

so
lv

in
g

F
re

d
h
o
lm

fi
rs

t
k
in

d
in

te
g
ra

l
eq

u
a
ti

o
n
s

1
5
6

k
n
o
w

le
d
g
e

d
is

co
v
er

y
1
5
7

ev
o
lv

in
g

ev
o
lu

ti
o
n
a
ry

a
lg

o
ri

th
m

s
1
5
8

6
,1

5
9

ev
o
lv

in
g

p
la

y
st

ra
te

g
ie

s
fo

r
N

im
g
a
m

e
1
6
0

ev
o
lv

in
g

h
eu

ri
st

ic
s

fo
r

tr
a
v
el

in
g

sa
le

sm
a
n

p
ro

b
le

m
1
6
1

so
lv

in
g

tr
ig

o
n
o
m

et
ri

c
id

en
ti

ti
es

1
6
2

S
a
n
ta

F
e

a
n
t

tr
a
il

2
9
,8

1
,8

2
8

4
7

g
en

er
a
ti

o
n

o
f
ca

ch
in

g
a
lg

o
ri

th
m

s
1
6
3

co
m

p
o
si

ti
o
n

o
f
m

u
si

c
1
6
4

m
a
st

er
m

in
d

g
a
m

e
1
6
5

co
m

p
le

x
sy

st
em

s
re

g
u
la

ti
o
n

1
6
6

g
en

er
a
te

h
a
sh

in
g

fu
n
ct

io
n
s

1
6
7

ev
o
lv

e
d
ig

it
a
l
su

rf
a
ce

s
1
6
8

0
/
1

m
u
lt

i-
co

n
st

ra
in

ed
k
n
a
p
sa

ck
p
ro

b
le

m
1
6
9

fu
n
ct

io
n

es
ti

m
a
ti

o
n

1
7
0

so
lv

in
g

d
iff

er
en

ti
a
l
eq

u
a
ti

o
n
s

1
7
1

p
o
rt

ra
it

p
a
in

te
r

p
ro

g
ra

m
s

1
7
2

p
o
st

d
o
ck

in
g

fi
lt

er
in

g
1
7
3



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

32 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

• Including, in comparison, other minor GP variants (such as Traceless Genetic
Programming174,175), which were not discussed here due to their limited repre-
sentation in the literature.

• Involving in comparison the variants of the methods investigated in this paper.
Some methods, like GE and SBGP have several variants used for some particular
problems. These variants have some features which makes them good candidates
in particular cases.

• Performing a numerical comparison of the considered methods. This would be
very interesting, but in the same time very difficult to achieve. The main prob-
lem is related to the fairness of the comparison. The standard way to compare
2 methods is to use the same parameters for both of them. However, minor
parameters (such as probabilities for applying various operators) can affect the
quality of the results. A possibility to make the comparison fair is to find the
best parameter settings for each method. In this way no other discussions over
the quality of the results would be possible. However, running each method with
its best parameters implies hard work and a lot of experiments.

Acknowledgments

The authors thank to anonymous reviewers for their useful suggestions. This re-
search was supported by grant IDEI-543 from CNCSIS.

References

1. M. Brameier ,“On linear genetic programming,”, PhD Thesis, Universitat Dortmund,
Germany, 2003.

2. M. Brameier and W. Banzhaf, Linear Genetic Programming. No. XVI in Genetic and
Evolutionary Computation, Springer, 2007.

3. M. Zhang, “Improving object detection performance with genetic programming,”
IJAIT, vol. 16, no. 5, pp. 849–873, 2007.

4. M. Brameier and W. Banzhaf, “A comparison of linear genetic programming and
neural networks in medical data mining,” IEEE-EC, vol. 5, no. 1, pp. 17–26, 2001.

5. C. Ferreira, “Gene expression programming: a new adaptive algorithm for solving
problems,” Complex Systems, vol. 13, no. 2, pp. 87–129, 2001.

6. M. Oltean and C. Groşan, “Evolving evolutionary algorithms using multi expression
programming,” in ECAL (W. Banzhaf (et al.) eds.), vol. 2801 of LNAI, pp. 651–658,
Springer, 2003.

7. C. Ryan, J. J. Collins, and M. O’Neill, “Grammatical evolution: Evolving pro-
grams for an arbitrary language,” in European Workshop on Genetic Programming
(W. Banzhaf (et al.) eds.), vol. 1391 of LNCS, pp. 83–95, Springer, 1998.

8. J. F. Miller and P. Thomson, “Cartesian genetic programming,” in EuroGP (R. Poli
(et al.) eds.), vol. 1802 of LNCS, pp. 121–132, Springer, 2000.

9. T. Perkis, “Stack-based genetic programming,” in IEEE WCCI, vol. 1, pp. 148–153,
IEEE Press, 1994.

10. J. R. Koza and R. Poli, “Genetic programming,” in Search Methodologies: Introduc-
tory Tutorials in Optimization and Decision Support Techniques (E. K. Burke and
G. Kendall, eds.), ch. 5, Springer, 2005.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 33

11. J. R. Koza, Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, 1992.

12. J. R. Koza, Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, 1994.

13. M. Brameier and W. Banzhaf, “Evolving teams of predictors with linear genetic
programming,” Genetic Programming and Evolvable Machines, vol. 2, no. 4, pp. 381–
407, 2001.

14. M. Brameier and W. Banzhaf, “Explicit control of diversity and effective variation
distance in linear genetic programming,” in EuroGP (A. G. B. Tettamanzi (et al.)
eds.), vol. 2278 of LNCS, pp. 37–49, Springer, 2002.

15. P. Nordin, W. Banzhaf, and F. D. Francone, “Efficient evolution of machine code for
CISC architectures using instruction blocks and homologous crossover,” in Advances
in Genetic Programming 3 (L. Spector (et al.) eds.), ch. 12, pp. 275–299, MIT Press,
1999.

16. P. Nordin, F. Hoffmann, F. D. Francone, M. Brameier, and W. Banzhaf, “AIM-GP
and parallelism,” in CEC (P. J. Angeline (et al.) eds.), vol. 2, pp. 1059–1066, IEEE
Press, 1999.

17. P. Nordin, “A compiling genetic programming system that directly manipulates the
machine code,” in Advances in Genetic Programming (K. E. Kinnear, Jr., ed.), ch. 14,
pp. 311–332, MIT Press, 1994.

18. N. L. Cramer, “A representation for the adaptive generation of simple sequential
programs,” in ICGA, Carnegie Mellon University, 1985.

19. C. Ferreira, “Discovery of the Boolean functions to the best density-classification
rules using gene expression programming,” in EuroGP (A. G. B. Tettamanzi (et al.)
eds.), vol. 2278 of LNCS, pp. 50–59, Springer, 2002.

20. M. Oltean, “Improving the search by encoding multiple solutions in a chromosome,”
in Evolutionary Machine Design: Methodology and Applications (N. Nedjah and L. de
Macedo Mourelle, eds.), ch. 4, pp. 85–110, Nova Publishers, 2005.

21. M. Oltean and C. Groşan, “A comparison of several linear genetic programming
techniques,” Complex Systems, vol. 14, no. 4, pp. 285–313, 2004.

22. M. Oltean and C. Groşan, “Evolving digital circuits using multi expression program-
ming,” in NASA/DoD Conference on Evolvable Hardware (R. S. Zebulum (et al.)
eds.), pp. 87–90, IEEE CS Press, 2004.

23. M. Oltean, “A-Brain: a general system for solving data analysis problems,” J. Exp.
Theor. Artif. Intell., vol. 19, no. 4, pp. 333–353, 2007.

24. V. A. Alfred, S. Ravi, and D. U. Jeffrey, Compilers, Principles, Techniques, and
Tools. Addison-Wesley, 1986.

25. D. H. Wolpert and W. G. Macready, “No free lunch theorems for search,” Tech. Rep.
SFI-TR-95-02-010, Santa Fe Institute, 1995.

26. D. H. Wolpert and W. G. Macready, “No free lunch theorems for optimization,”
IEEE Transactions on Evolutionary Computation, vol. 1, no. 1, pp. 67–82, 1997.

27. R. Bellman, Dynamic Programming. Princeton University Press, 1957.
28. G. Syswerda, “A study of reproduction in generational and steady state genetic

algorithms,” in FOGA (G. J. E. Rawlins, ed.), pp. 94–101, Morgan Kaufmann, 1991.
29. M. O’Neill and C. Ryan, “Under the hood of grammatical evolution,” in GECCO

(W. Banzhaf (et al.) eds.), vol. 2, pp. 1143–1148, Morgan Kaufmann, 1999.
30. M. O’Neill and C. Ryan, Grammatical Evolution: Evolutionary Automatic Program-

ming in a Arbitrary Language, vol. 4 of Genetic programming. Kluwer Academic
Publishers, 2003.

31. J. Backus, “Programming language semantics and closed applicative languages,”



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

34 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

ACM Symp. on the Principles of Programming Languages, pp. 71–86, 1973.
32. N. R. Paterson and M. Livesey, “Distinguishing genotype and phenotype in genetic

programming,” in Late Breaking Papers at the Genetic Programming 1996 Confer-
ence Stanford University, 1996 (J. R. Koza, ed.), pp. 141–150, Stanford Bookstore,
1996.

33. C. Ryan and M. O’Neill, “Grammatical evolution: A steady state approach,” in Late
Breaking Papers at the Genetic Programming Conference (J. R. Koza, ed.), Stanford
University Bookstore, 1998.

34. M. Mitchell, An Introduction to Genetic Algorithms. The MIT Press, 1996.
35. C. Ryan, M. Keijzer, and M. Nicolau, “On the avoidance of fruitless wraps in gram-

matical evolution,” in GECCO (E. Cantú-Paz (et al.) eds.), vol. 2724 of LNCS,
pp. 1752–1763, Springer, 2003.

36. R. Poli, “Evolution of recursive transition networks for natural language recognition
with parallel distributed genetic programming,” Tech. Rep. CSRP-96-19, University
of Birmingham, School of Computer Science, 1996.

37. R. Poli, “Evolution of graph-like programs with parallel distributed genetic program-
ming,” in Genetic Algorithms: Proceedings of the Seventh International Conference
(T. Back, ed.), pp. 346–353, Morgan Kaufmann, 1997.

38. R. Poli, “Discovery of symbolic, neuro-symbolic and neural networks with paral-
lel distributed genetic programming,” in ICANNGA97 (G. D. Smith (et al.) eds.),
Springer, 1997.

39. R. Poli, “Evolution of recursive transition networks for natural language recogni-
tion with parallel distributed genetic programming,” in Evolutionary Computing
(D. Corne and J. L. Shapiro, eds.), vol. 1305 of LNCS, pp. 163–177, Springer, 1997.

40. R. Poli, “Parallel distributed genetic programming,” in New Ideas in Optimization
(D. Corne, M. Dorigo, and F. Glover, eds.), Advanced Topics in Computer Science,
ch. 27, pp. 403–431, McGraw-Hill, 1999.

41. H.-G. Beyer and H.-P. Schwefel, “Evolution strategies: a comprehensive introduc-
tion,” Natural Computing, vol. 1, no. 1, pp. 3–52, 2002.

42. W. S. Bruce, “The lawnmower problem revisited: Stack-based genetic programming
and automatically defined functions,” in Genetic Programming 1997: Proceedings of
the Second Annual Conference (J. R. Koza (et al.) eds.), pp. 52–57, Morgan Kauf-
mann, 13-16 1997.

43. K. Stoffel and L. Spector, “High-performance, parallel, stack-based genetic program-
ming,” in Genetic Programming 1996: Proceedings of the First Annual Conference
(J. R. Koza (et al.) eds.), pp. 224–229, MIT Press, 1996.

44. L. Spector and A. J. Robinson, “Genetic programming and autoconstructive evo-
lution with the push programming language,” Genetic Programming and Evolvable
Machines, vol. 3, no. 1, pp. 7–40, 2002.

45. E. Tchernev, “Forth crossover is not a macromutation?,” in Genetic Programming
1998: Proceedings of the Third Annual Conference (J. R. Koza (et al.) eds.), pp. 381–
386, Morgan Kaufmann, 1998.

46. E. B. Tchernev, “Stack-correct crossover methods in genetic programming,” in Late
Breaking papers at GECCO-2002 (E. Cantú-Paz, ed.), pp. 443–449, AAAI, 2002.

47. E. B. Tchernev and D. S. Phatak, “Control structures in linear and stack-based
genetic programming,” in Late Breaking Papers at GECCO 2004 (M. Keijzer, ed.),
2004.

48. C. L. Hamblin, “Translation to and from polish notation,” The Computer Journal,
vol. 5, no. 3, pp. 210–213, 1962.

49. C. L. Hamblin, “Computer languages,” Australian Computer Journal, vol. 17, no. 4,



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 35

pp. 195–198, 1985.
50. W. Banzhaf and A. Leier, “Evolution on neutral networks in genetic programming,”

in Genetic Programming Theory and Practice III (T. Yu (et al.) eds.), vol. 9 of
Genetic Programming, ch. 14, pp. 207–221, Springer, 2005.

51. F. Z. Hadjam, C. Moraga, and M. Benmohamed, “Cluster-based evolutionary design
of digital circuits using all improved multi-expression programming,” in Late breaking
paper at (GECCO’2007) (P. A. N. Bosman, ed.), pp. 2475–2482, ACM Press, 2007.

52. F. Z. Hadjam, C. Moraga, and L. Hildebrand, “Evolutionary design of digital circuits
using improved multi-expression programming,”, Research Report 812, Faculty of
Informatics, University of Dortmund, Germany, 2007.

53. M. Oltean, “Solving even-parity problems using multi expression programming,” in
Proceedings of Joint Conference on Information Sciences (K. Chen (et al), eds.),
vol. 1, pp. 315–318, Association for Intelligent Machinery, 2003.

54. M. Oltean, “Improving multi expression programming: An ascending trail from sea-
level even-3-parity problem to alpine even-18-parity problem,” in Evolvable Machines:
Theory & Practice (N. Nedjah and L. de Macedo Mourelle, eds.), ch. 10, pp. 229–256,
Springer, 2004.

55. M. Oltean, “Evolving reversible circuits for the even-parity problem,” in EvoWork-
shops: Applications of Evolutionary Computing (F. Rothlauf (et al.) eds.), vol. 3449
of LNCS, pp. 225–234, Springer, 2005.

56. M. Oltean, C. Groşan, and M. Oltean, “Evolving digital circuits for the knapsack
problem,” in ICCS (M. Bubak (et al.) eds.), vol. 3038 of LNCS, pp. 1257–1264,
Springer, 2004.

57. U. R. Karpuzcu, “Automatic verilog code generation through grammatical evolu-
tion,” in GECCO 2005 (F. Rothlauf, ed.), pp. 394–397, ACM, 2005.

58. M. Collins, “Finding needles in haystacks is harder with neutrality,” in GECCO
(H.-G. Beyer and U.-M. O’Reilly, eds.), pp. 1613–1618, ACM, 2005.

59. J. Miller, “What bloat? Cartesian Genetic Programming on Boolean problems,” in
2001 Genetic and Evolutionary Computation Conference Late Breaking Papers (E. D.
Goodman, ed.), pp. 295–302, 2001.

60. J. F. Miller, “An empirical study of the efficiency of learning Boolean functions using
a cartesian genetic programming approach,” in (GECCO) (W. Banzhaf (et al.) eds.),
vol. 2, pp. 1135–1142, Morgan Kaufmann, 1999.

61. J. F. Miller, D. Job, and V. K. Vassilev, “Principles in the evolutionary design of
digital circuits—part I,” Genetic Programming and Evolvable Machines, vol. 1, no. 1–
2, pp. 7–35, 2000.

62. J. F. Miller, P. Thomson, and T. Fogarty, “Designing electronic circuits using evo-
lutionary algorithms. arithmetic circuits: A case study,” in Genetic Algorithms and
Evolution Strategy in Engineering and Computer Science (D. Quagliarella (et al.)
eds.), pp. 105–131, John Wiley and Sons, 1998.

63. L. Sekanina, “Evolutionary design of gate-level polymorphic digital circuits,” in
EvoWorkshops: Applications of Evolutionary Computing (F. Rothlauf (et al.) eds.),
vol. 3449 of LNCS, pp. 185–194, Springer, 2005.

64. T. Yu and J. Miller, “Neutrality and the evolvability of Boolean function landscape,”
in EuroGP’2001 (J. F. Miller (et al.) eds.), vol. 2038 of LNCS, pp. 204–217, Springer,
2001.

65. R. Crawford-Marks and L. Spector, “Size control via size fair genetic operators in
the PushGP genetic programming system,” in GECCO 2002 (W. B. Langdon (et al.)
eds.), pp. 733–739, Morgan Kaufmann, 2002.

66. W. Banzhaf, P. Nordin, and M. Olmer, “Generating adaptive behavior for a real



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

36 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

robot using function regression within genetic programming,” in Annual Conference
on Genetic Programming (J. R. Koza (et al.) eds.), pp. 35–43, Morgan Kaufmann,
1997.

67. P. Nordin and W. Banzhaf, “An on-line method to evolve behavior and to control a
miniature robot in real time with genetic programming,” Adaptive Behavior, vol. 5,
no. 2, pp. 107–140, 1996.

68. P. Nordin, W. Banzhaf, and M. Brameier, “Evolution of a world model for a miniature
robot using genetic programming,” Robotics and Autonomous Systems, vol. 25, no. 1-
2, pp. 105–116, 1998.

69. K. Wolff and P. Nordin, “Learning biped locomotion from first principles on a simu-
lated humanoid robot using linear genetic programming.,” in GECCO (M. Ades and
L. M. Deschaine eds.), vol. 2723 of LNCS, pp. 495–506, Springer, 2003.

70. M. ONeill and J. Collins, “Automatic generation of generic robot behaviours us-
ing grammatical evolution,” in AROB5 (C. Ryan and J. Buckley, eds.), pp. 21–29,
Limerick University Press, 2000.

71. S. Harding and J. F. Miller, “Evolution of robot controller using cartesian genetic
programming,” in EuroGP (M. Keijzer (et al.) eds.), vol. 3447 of LNCS, pp. 62–73,
Springer, 2005.

72. D. Mota Dias, M. A. C. Pacheco, and J. F. M. Amaral, “Automatic synthesis of
microcontroller assembly code through linear genetic programming,” in Genetic Sys-
tems Programming: Theory and Experiences (N. Nedjah, A. Abraham, and L. de
Macedo Mourelle, eds.), pp. 195–234, Springer, 2006.

73. A. Abraham and C. Groşan, “Automatic programming methodologies for electronic
hardware fault monitoring,” Journal of Universal Computer Science, vol. 12, no. 4,
pp. 408–431, 2006.

74. A. Abraham and C. Groşan, “Genetic programming approach for fault modeling of
electronic hardware,” in CEC (D. Corne (et al.) eds.), vol. 2, pp. 1563–1569, IEEE
Press, 2005.

75. H. Cao, J. Yu, and L. Kang, “An evolutionary approach for modeling the equivalent
circuit for electrochemical impedance spectroscopy,” in CEC (R. Sarker (et al.) eds.),
pp. 1819–1825, IEEE Press, 2003.

76. J. Braunstein, H.-S. Kim, S. Kahng, and S.-H. Ha, “A multi-expression programming
application to the design of planar antennae,” in Electromagnetic Field Computation,
2006 12th Biennial IEEE Conference on, pp. 123–123, 2006.

77. G. C. Wilson and W. Banzhaf, “A comparison of cartesian genetic programming and
linear genetic programming,” in EuroGP 2008 (M. O’Neill (et al.) eds.), vol. 4971 of
LNCS, pp. 182–193, Springer, 2008.

78. E. Bautu, A. Bautu, and H. Luchian, “Adagep - an adaptive gene expression pro-
gramming algorithm,” in SYNASC’05, pp. 403–406, IEEE Computer Society, 2005.

79. E. Bautu, A. Bautu, and H. Luchian, “Symbolic regression on noisy data with genetic
and gene expression programming,” in SYNASC’05, pp. 321–324, IEEE Computer
Society, 2005.

80. H. Yun Quan and G. Yang, “Gene expression programming with DAG chromosome,”
in ISICA 2007 (L. Kang (et al.) eds.), vol. 4683 of LNCS, pp. 271–275, Springer, 2007.

81. M. O’Neill and C. Ryan, “Genetic code degeneracy: Implications for grammatical
evolution and beyond,” in ECAL (D. Floreano (et al.) eds.), vol. 1674 of LNAI,
pp. 149–153, Springer, 1999.

82. M. O’Neill, C. Ryan, M. Keijzer, and M. Cattolico, “Crossover in grammatical evo-
lution: The search continues,” in EuroGP (J. F. Miller (et al.) eds.), vol. 2038 of
LNCS, pp. 337–347, Springer, 2001.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 37

83. P. L. Lanzi, “XCS with stack-based genetic programming,” in CEC2003 (R. Sarker
(et al.) eds.), pp. 1186–1191, IEEE Press, 2003.

84. L. Spector, “Adaptive populations of endogenously diversifying pushpop organisms
are reliably diverse,” in rtificial Life VIII, the 8th International Conference on the
Simulation and Synthesis of Living Systems (R. K. Standish (et al.) eds.), pp. 142–
145, MIT Press, 2002.

85. M. Bhattacharya, A. Abraham, and B. Nath, “A linear genetic programming ap-
proach for modeling electricity demand prediction Victoria,” in HIS (A. Abraham
and M. Köppen, eds.), Advances in Soft Computing, pp. 379–393, Physica, 2001.

86. Q. Li, Z. Cai, L. Zhu, and Y. Zhao, “Application of gene expression programming in
predicting the amount of gas emitted from coal face,” Journal of Basic Science and
Engineering, vol. 12, no. 1, pp. 49–54, 2004.

87. A. Baykasoglu and L. Ozbakir, “MEPAR-miner: Multi-expression programming for
classification rule mining,” European Journal of Operational Research, vol. 183, no. 2,
pp. 767–784, 2007.

88. J. A. Walker and J. F. Miller, “Predicting prime numbers using cartesian genetic
programming,” in EuroGP (M. Ebner (et al.) eds.), vol. 4445 of LNCS, pp. 205–216,
Springer, 2007.

89. M. Defoin-Platel, M. Chami, M. Clergue, and P. Collard, “Teams of genetic predictors
for inverse problem solving,” in EuroGP (M. Keijzer (et al.) eds.), vol. 3447 of LNCS,
pp. 341–350, Springer, 2005.

90. S. W. Wilson, “Classifier conditions using gene expression programming,” tech. rep.,
IlliGAL Report No. 2008001, University of Illinois at Urbana-Champaign, USA, 2008.

91. C. Zhou, W. Xiao, T. M. Tirpak, and P. C. Nelson, “Evolving accurate and compact
classification rules with gene expression programming,” IEEE TEC, vol. 7, no. 6,
pp. 519–531, 2003.

92. M. H. Marghny and I. E. El-Semman, “Exact logical classification rules with gene
expression programming; microarray case study,” in AIML (H. Elmahdy, ed.), 2005.

93. W. Wang, Q. Li, and Z. Cai, “Finding compact classification rules with parsimo-
nious gene expression programming,” in ICNN&B (M. Zhao and Z. Shi, eds.), vol. 2,
pp. 702–705, IEEE Press, 2005.

94. A. Brabazon and M. O’Neill, “Credit classification using grammatical evolution,”
Informatica, vol. 30, no. 3, pp. 325–335, 2006.

95. K. Holladay, K. Robbins, and J. von Ronne, “FIFTH: A stack based GP language for
vector processing,” in EuroGP (M. Ebner (et al.) eds.), vol. 4445 of LNCS, Springer,
2007.

96. C. Ferreira, “Designing neural networks using gene expression programming,” in
Online World Conference on Soft Computing in Industrial Applications (A. Abraham
and M. Köppen, eds.), 2004.

97. I. Tsoulos, D. Gavrilis, and E. Glavas, “Neural network construction using grammat-
ical evolution,” in IEEE ISSPIT, pp. 827– 831, IEEE Press, 2005.

98. B. Sharma, “Cartesian genetic programming for evolving neural networks: Applica-
tion in clinical data analysis,” Master’s thesis, University of Birmingham, 2002.

99. J. H. Moore and L. W. Hahn, “Petri net modeling of high-order genetic systems
using grammatical evolution,” BioSystems, vol. 72, no. 1-2, pp. 177–86, 2003.

100. P. Nordin and W. Banzhaf, “Programmatic compression of images and sound,” in
Annual Conference on Genetic Programming (J. R. Koza, D. E. Goldberg, D. B.
Fogel, and R. L. Riolo, eds.), pp. 345–350, MIT Press, 1996.

101. K. Krawiec and B. Bhanu, “Coevolutionary computation for synthesis of recognition
systems,” in Proceedings of IEEE Workshop on Learning in Computer Vision and



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

38 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

Pattern Recognition, vol. 6, 2003.
102. J. Z. Xie, “Machine learning in automatic text summarization: From extracting to

abstracting,” tech. rep., University of Illinois at Chicago, 2005.
103. Z. Xie, X. Li, B. Di Eugenio, W. Xiao, T. M. Tirpak, and P. C. Nelson, “Using gene

expression programming to construct sentence ranking functions for text summariza-
tion,” in COLING, pp. 1381–1384, 2004.

104. A. Ortega, A. Dalhoum, and M. Alfonseca, “Using grammatical evolution to design
curves with a given fractal dimension,” in ICEIS (O. Camp(et al.) eds.), pp. 395–398,
ICEIS Press, 2003.

105. L. Sekanina, “Image filter design with evolvable hardware,” in EvoWorkshops 2002,
Applications of Evolutionary Computing (S. Cagnoni (et al.) eds.), vol. 2279 of LNCS,
pp. 255–266, Springer, 2002.

106. L. Sekanina and R. Ruzicka, “Easily testable image operators: The class of circuits
where evolution beats engineers,” in NASA/DoD Conference on Evolvable Hardware,
pp. 135–144, IEEE CS Press, 2003.

107. W. Zhu and H. Timmermans, “Exploring heuristics underlying pedestrian shopping
decision processes an application of gene expression programming,” in Innovations
in Design and Decision Support Systems in Architecture and Urban Planning. Part
2 (J. P. Van Leeuwen and H. J. P. Timmermans, eds.), pp. 121–136, Springer, 2007.

108. M. O’Driscoll, S. McKenna, and J. J. Collins, “Synthesising edge detectors with
grammatical evolution,” in GECCO 2002 (A. M. Barry, ed.), pp. 137–140, AAAI,
2002.

109. H. A. Montes and J. L. Wyatt, “Cartesian genetic programming for image processing
tasks,” in IASTED ICNNCI, pp. 185–190, IASTED/ACTA Press, 2003.

110. A. Heddad, M. Brameier, and R. MacCallum, “Evolving regular expression-based
sequence classifiers for protein nuclear localisation,” in EvoWorkshops: Applications
of Evolutionary Computing (G. R. Raidl (et al.), eds.), vol. 3005 of LNCS, pp. 31–40,
Springer, 2004.

111. W. B. Langdon and W. Banzhaf, “Repeated sequences in linear genetic programming
genomes,” Complex Systems, vol. 15, no. 4, pp. 285–306, 2005.

112. A. Floares, “Computation intelligence tools for modeling and controlling pharma-
cogenomic systems: Genetic programming and neural networks,” in IEEE WCCI
2006, (G. G. Yen (et al.) eds.), pp. 7510–7517, IEEE Press, 2006.

113. A. Floares, “Genetic programming and neural networks feedback linearization
for modeling and controlling complex pharmacogenomic systems,” in WILF 2005
(I. Bloch (et al.) eds.), vol. 3849 of LNCS, pp. 178–187, Springer, 2005.

114. J. F. Miller, “Evolving developmental programs for adaptation, morphogenesis, and
self-repair,” in ECAL (W. Banzhaf (et al.) eds.), vol. 2801 of LNAI, pp. 256–265,
Springer, 2003.

115. M. O’Neill, C. Adley, and A. Brabazon, “A grammatical evolution approach to eu-
karyotic promoter recognition,” in Bioinformatics Inform Workshop and Symposium,
2005.

116. X. U, C.-J. Tang, H. Zhang, S. Qiao, Y. Jiang, J. Liu, and P. Han, “Mining formula-
syndrome relationship in traditional chinese medicinewith gene expression program-
ming,” Computer Applications, vol. 25, no. 11, pp. 2679–2680, 2005.

117. D. Gavrilis and I. Tsoulos, “Classification of fetal heart rate using grammatical evolu-
tion,” in IEEE Workshop on Signal Processing Systems Design and Implementation,
pp. 425–429, 2005.

118. W. Sheta, N. Eltonsy, G. Tourassi, and A. Elmaghraby, “Automated detection of
breast cancer from screening mammograms using genetic programming,” IJICIS,



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 39

vol. 5, no. 1, pp. 1–10, 2005.
119. A. Abraham, “Natural computation for business intelligence from web usage mining,”

in SYNASC, pp. 3–10, IEEE Computer Society Press, 2005.
120. C. Groşan and A. Abraham, “Stock market modeling using genetic programming

ensembles,” in Genetic Systems Programming: Theory and Experiences (N. Nedjah,
A. Abraham, and L. de Macedo Mourelle, eds.), vol. 13 of Studies in Computational
Intelligence, pp. 133–148, Springer, 2006.

121. C. Groşan, A. Abraham, S. Y. Han, and V. Ramos, “Stock market prediction us-
ing multi expression programming,” in Portuguese Conference on Artificial Intelli-
gence, Workshop on Artificial Life and Evolutionary Algorithms (A. C. C. Bento and
G. Dias, eds.), vol. 13 of Studies in Computational Intelligence, pp. 73–78, IEEE
Press, 2005.

122. M. O’Neill and A. Brabazon, “Recent advances in grammatical evolution: the op-
portunities for financial modeling,” in Proceedings of International Conference on
Numerical Methods for Finance, 2006.

123. M. O’Neill, A. Brabazon, C. Ryan, and J. J. Collins, “Evolving market index trading
rules using grammatical evolution,” in EvoWorkshops: Applications of Evolutionary
Computing (E. J. W. Boers (et al.) eds.), vol. 2037 of LNCS, pp. 343–352, Springer,
2001.

124. M. O’Neill, A. Brabazon, C. Ryan, and J. J. Collins, “Developing a market timing
system using grammatical evolution,” in GECCO (L. Spector (et al.) eds.), pp. 1375–
1381, Morgan Kaufmann, 2001.

125. H. Lopes and W. Weinert, “A gene-expression programming system for time-series
modeling,” 2004.

126. A. Brabazon, M. O’Neill, R. Matthews, and C. Ryan, “Grammatical evolution and
corporate failure prediction,” in GECCO (W. B. Langdon (et al.), ed.), pp. 1011–
1018, Morgan Kaufmann, 2002.

127. A. Brabazon, M. O’Neill, C. Ryan, and R. Matthews, “Evolving classifiers to model
the relationship between strategy and corporate performance using grammatical evo-
lution,” in EuroGP (J. A. Foster (et al.) eds.), vol. 2278 of LNCS, pp. 103–112,
Springer, 2002.

128. A. Brabazon and M. O’Neill, “Anticipating bankruptcy reorganisation from raw fi-
nancial data using grammatical evolution,” in EvoWorkshops: Applications of Evo-
lutionary Computing (G. R. Raidl (et al.), eds.), vol. 2611 of LNCS, pp. 368–377,
Springer, 2003.

129. A. Brabazon and M. O’Neill, “Diagnosing corporate stability using grammatical evo-
lution,” International Journal of Applied Mathematics and Computer Science, vol. 14,
no. 3, pp. 317–333, 2004.

130. A. Brabazon and M. O’Neill, “Bond-issuer credit rating with grammatical evolution,”
in EvoWorkshops: Applications of Evolutionary Computing (G. R. RRaidl (et al.),
ed.), vol. 3005 of LNCS, pp. 270–279, Springer, 2004.

131. A. Brabazon and M. O’Neill, “Evolving technical trading rules for spot foreign-
exchange markets using grammatical evolution,” Computational Management Sci-
ence, vol. 1, no. 3–4, pp. 311–327, 2004.

132. I. Dempsey, “Constant generation for the financial domain using grammatical evolu-
tion,” in GECCO (F. R. (et al.), ed.), pp. 350–353, ACM, 2005.

133. I. Dempsey, M. O’Neill, and A. Brabazon, “Adaptive trading with grammatical evo-
lution,” in CEC, pp. 2587–2592, IEEE Press, 2006.

134. L. M. Deschain, “Tackling real world environmental engineering challenges with linear
genetic programming,” PCAI Magazine, vol. 15, no. 5, pp. 35–37, 2000.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

40 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

135. K. Eldrandaly and A. Negm, “Performance evaluation of gene expression program-
ming for hydraulic data mining,” International Arab Journal of Information Tech-
nology, vol. 5, no. 2, pp. 126–131, 2008.

136. J. A. Walker and J. F. Miller, “Solving real-valued optimisation problems using
Cartesian Genetic Programming,” in GECCO ’07 (D. Thierens (et al.) eds.), vol. 2,
pp. 1724–1730, ACM Press, 2007.

137. J. A. Walker and J. F. Miller, “Changing the genospace: Solving GA problems with
cartesian genetic programming,” in EuroGP (M. Ebner (et al.) eds.), vol. 4445 of
LNCS, pp. 261–270, Springer, 2007.

138. L. M. Deschain, J. J. Patel, R. D. Guthrie, J. T. Grimski, and M. J. Ades, “Using
linear genetic programming to develop a C/C++ simulation model of a waste in-
cinerator,” in Proceedings of Advanced Technology Simulation Conference (M. Ades,
ed.), 2001.

139. D. Song, M. I. Heywood, and A. N. Zincir-Heywood, “A linear genetic programming
approach to intrusion detection,” in GECCO (E. Cantú-Paz (et al.), eds.), vol. 2724
of LNCS, pp. 2325–2336, Springer, 2003.

140. A. Abraham and C. Groşan, “Evolving intrusion detection systems,” in Genetic
Systems Programming: Theory and Experiences (N. Nedjah, A. Abraham, and L. de
Macedo Mourelle, eds.), vol. 13 of Studies in Computational Intelligence, pp. 57–80,
Springer, 2006. Forthcoming.

141. A. Abraham and V. Ramos, “Web usage mining using artificial ant colony clustering
and genetic programming,” in CEC (R. Sarker (et al.) eds.), pp. 1384–1391, IEEE
Press, 2003.

142. J. Hart and M. Shepperd, “The evolution of concurrent control software using genetic
programming,” in EuroGP (M. Keijzer (et al.) eds.), vol. 3003 of LNCS, pp. 289–298,
Springer, 2004.

143. F. D. Francone, L. M. Deschaine, T. Battenhouse, and J. J. Warren, “Discrimination
of unexploded ordnance from clutter using linear genetic programming,” in Genetic
Programming Theory and Practice III (T. Yu (et al.) eds.), vol. 9 of Genetic Pro-
gramming, ch. 4, pp. 49–64, Springer, 2005.

144. S. Mukkamala, A. H. Sung, and A. Abraham, “Hybrid multi agent framework for
detection of stealthy probes,,” Applied Soft Computing Journal, vol. 5, no. 3, pp.
631 641, 2007.

145. L. Spector, J. Klein, C. Perry, and M. Feinstein, “Emergence of collective behav-
ior in evolving populations of flying agents,” Genetic Programming and Evolvable
Machines, vol. 6, pp. 111–125, 2005.

146. L. Spector and A. Robinson, “Multi-type, self-adaptive genetic programming as an
agent creation tool,” in GECCO 2002 (A. M. Barry, ed.), pp. 73–80, AAAI, 2002.

147. A. Abraham, C. Groşan, T. Cong, and J. Lakhmi, “A concurrent neural network -
genetic programming model for decision support systems,” in ICKM (S. Hawamdeh,
ed.), pp. 231–245, World Scientific, 2005.

148. L. Spector, J. Klein, and M. Keijzer, “The push3 execution stack and the evolution
of control,” in GECCO 2005 (H.-G. Beyer (et al.) eds.), vol. 2, pp. 1689–1696, ACM
Press, 2005.

149. C. Ferreira, “Combinatorial optimization by gene expression programming: Inversion
revisited,” in Proceedings of Argentine Symposium on Artificial Intelligence (J. M.
Santos and A. Zapico, eds.), pp. 160–174, 2002.

150. D. Jiang, Z. Wu, and L. Kang, “Parameter identifications in differential equations by
gene expression programming,” in ICNC 2007, pp. 644–648, IEEE Computer Society,
2007.



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

Genetic Programming with linear representation: a survey 41

151. Y. Liu, J. English, and E. Pohl, “Application of gene expression programming in
the reliability of consecutive-k-out-of-n: F systems with identical component reliabil-
ities,” in ICIC 2007, (A. D.-S. Huang (et al.) eds.), pp. 217–224, Springer, 2007.

152. C. Tang, L. Duan, J. Peng, H. Zhang, and Y. Zhong, “The strategies to improve
performance of function mining by gene expression programming-genetic modify-
ing, overlapped gene, backtracking and adaptive mutation,” in Proceedings of DBSJ
Annual Conference: DEWJ, 2006.

153. M. Saltan and S. Terzi, “Comparative analysis of using artificial neural networks
(ANN) and gene expression programming (GEP) in back calculation of pavement
layer thickness,” Indian Journal of Engineering and Materials Sciences, vol. 12, no. 1,
pp. 42–50, 2005.

154. S. Terzi, “Modeling the deflection basin of flexible highway pavements by gene ex-
pression programming,” Journal of Applied Sciences, vol. 5, no. 2, pp. 309–314, 2005.

155. H.-y. Shi and G.-m. Dai, “Plan on short path avoiding obstructions based on gene
expression programming,” Application Research of Computers, vol. 22, no. 11, pp. 82–
84, 2005.

156. E. Bautu, A. Bautu, and H. Luchian, “A gep-based approach for solving fredholm
first kind integral equations,” in SYNASC, pp. 325–328, IEEE Computer Society,
2005.

157. C. Tang, J. J. Peng, H. Zhang, and Y. Zhong, “Three new techniques for knowledge
discover by gene expression programming–transgene, overlapped gene expression and
backtracking evolution,” Journal of Computer Applications, vol. 25, pp. 1978–1981,
2005.

158. M. Oltean, “Evolving evolutionary algorithms using linear genetic programming,”
Evolutionary Computation, vol. 13, pp. 387–410, 2005.

159. M. Oltean, “Evolving evolutionary algorithms with patterns,” Soft Computing,
vol. 11, no. 6, pp. 503–518, 2006.

160. M. Oltean, “Evolving winning strategies for nim-like games,” in World Computer
Congress - Student Forum (IFIP) (M. Kaâniche, ed.), pp. 353–364, Kluwer, 2004.

161. M. Oltean and D. Dumitrescu, “Evolving TSP heuristics using multi expression pro-
gramming,” in ICCS (M. Bubak (et al.) eds.), vol. 3037 of LNCS, pp. 670–673,
Springer, 2004.

162. C. Ryan, M. O’Neill, and J. J. Collins, “Grammatical evolution: Solving trigonomet-
ric identities,” in International Mendel Conference on Genetic Algorithms, Optimi-
sation Problems, Fuzzy Logic, Neural Networks, Rough Sets., pp. 111–119, Technical
University of Brno, 1998.

163. M. O’Neill and C. Ryan, “Automatic generation of caching algorithms,” in Proceed-
ings of Evolutionary Algorithms in Engineering and Computer Science (K. Miettinen
(et al.) eds.), pp. 127–134, John Wiley & Sons, 1999.

164. A. Ortega, R. S. Alfonso, and M. Alfonseca, “Automatic composition of music by
means of grammatical evolution,” in APL, vol. 32, pp. 148–155, ACM Press, 2002.

165. C. Ryan, M. Nicolau, and M. O’Neill, “Genetic algorithms using grammatical evo-
lution,” in EuroGP (J. A. Foster (et al.) eds.), vol. 2278 of LNCS, pp. 278–287,
Springer, 2002.

166. S. Amarteifio and M. O’Neill, “An evolutionary approach to complex system regu-
lation using grammatical evolution,” in International Conference on the Simulation
and Synthesis of Living Systems (J. Pollack (et al.) eds.), pp. 551–556, The MIT
Press, 2004.

167. P. Berarducci, D. Jordan, D. Martin, and J. Seitzer, “GEVOSH: Using grammatical
evolution to generate hashing functions,” in GECCO (R. Poli (et al.) eds.), vol. 3102



June 30, 2008 12:42 WSPC/INSTRUCTION FILE allgp

42 Mihai Oltean, Crina Groşan, Laura Dioşan, Cristina Mihăilă

of LNCS, pp. 31–39, Springer, 2004.
168. M. Hemberg and U.-M. O’Reilly, “Extending grammatical evolution to evolve digital

surfaces with genr8,” in EuroGP (M. Keijzer (et al.) eds.), vol. 3003 of LNCS, pp. 299–
308, Springer, 2004.

169. R. Cleary and M. O’Neill, “An attribute grammar decoder for the 01 multiconstrained
knapsack problem,” in EvoCOP (G. R. Raidl and J. Gottlieb, eds.), vol. 3448 of
LNCS, pp. 34–35, Springer, 2005.

170. I. G. Tsoulos, D. Gavrilis, and E. Dermatas, “GDF: A tool for function estimation
through grammatical evolution,” Computer Physics Communications, vol. 174, no. 7,
pp. 555–559, 2006.

171. I. G. Tsoulos and I. E. Lagaris, “Solving differential equations with genetic pro-
gramming,” Genetic Programming and Evolvable Machines, vol. 7, no. 1, pp. 33–54,
2007.

172. S. DiPaola, “Evolving creative portrait painter programs using darwinian techniques
with an automatic fitness function,” in Electronic Imaging & Visual Arts, 2005.

173. A. Garmendia-Doval, S. Morley, and S. Juhos, “Post docking filtering using cartesian
genetic programming,” in ICAE (P. Liardet (et al.) eds.), vol. 2936 of LNCS, pp. 189–
200, Springer, 2003.

174. M. Oltean, “Solving Even-Parity Problems using Traceless Genetic Programming,”,
CEC, (G. Greenwood (et al.) eds.), pp. 1813–1819, IEEE Press, 2004.

175. M. Oltean, C. Groşan, “Solving Multiobjective Optimization Problems using Trace-
less Genetic Programming,”, Journal of theoretical and experimental artificial intel-
ligence, vol. 19, pp. 227–248, 2007.


