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Abstract—A new Genetic Programming (GP) variant called The paper is organized as follows: In section Il the Traceless
Traceless Genetic Programming (TGP) is proposed in this paper. Genetic Programming technique is described. The parity prob-
TGP is a hybrid method combining a technique for building oy, is priefly presented in section IIl. In section IV several

the individuals and a technique for representing the individuals. . - - .
The main difference between TGP and other GP techniques numerical experiments for solving the parity problems are

is that TGP does not explicitly store the evolved computer Performed.
programs. Two genetic operators are used in conjunction with 0T G =
TGP: crossover and insertion. TGP is applied for evolving digital - TRACELESSGENETIC FROGRAMMING

circuits for the even-parity problem. Numerical experiments In this section the proposed TGP technique is described.

show that TGP outperforms standard GP with several orders TGp s a hybrid method combining a technique for building

of magnitude. Lo - i S
the individuals and a technique for representing the individu-

Is.
I. INTRODUCTION as

Traceless Genetic Programming (TGP)s a GP [2], [3] A. Prerequisite

variant as it evolves a population of computer programs. TGP The quality of a GP individual is usually computed using a

is a hybrid method combining a technique for building th&et of fithess cases [2], [3]. For instance, the aim of symbolic

individuals and technique for representing the individuals. regressiop is to find a mathematical expression that satisfies a
The main difference between the TGP and GP is that Tt ofm fitness cases. o

does not explicitly store the evolved computer programs. TGPYWe consider a problem with inputs: z,, s, ...z, and

is useful when the trace (the way in which the results aff1® outputf. The inputs are also called terminals [2]. The

obtained) between the input and output is not important. ancUon.symboIs that we use for constructing a mathematical

this way the space used by traditional techniques for storifgPression aré” = {+, —,x, /, sin}. _ .

the entire computer programs (or mathematical expressions ifFach fitness case is given assa+ 1) dimensional array

the simple case of symbolic regression) is saved. of real values:
We choose to apply the proposed TGP technique to the
even-parity problems because according to Koza [2] these of vE vk ok fe
problems appear to be the most difficult Boolean functions
to be detected via a blind random search. wherev” is the value of thej*" attribute (which isz;) in the
Evolutionary techniques have been extensively used fbf' fitness case angj is the output for thet'" fitness case.
evolving digital circuits [1], [2], [3], [8], [4], [5], [6], [7], Usually more fitness cases are given (denotedrfyand

[11], due to their practical importance. The case of evethe task is to find the expression that best satisfies all these
parity circuits was deeply analyzed [2], [3], [8], [7] due tditness cases. This is usually done by minimizing the quantity:
their simple representation. m
Special techniques have been proposed in order to improve Q= Z |fr — okl
in standard GP: Automatically Defined Functions [3], Sub- k=1
machine code GP [9] and Sub-symbolic node representatigfere f;, is the target value for thet” fitness case and;, is
[10]. the actual (obtained) value for thé" fitness case.
Standard GP was able to solve up to even-5 parity. Usingthe )
proposed TGP we are able to easily solve up to even-8 parfty [ndividual representation
problem. Numerical experiments show that TGP outperformsEach TGP individual represents a mathematical expression
standard GP with several order of magnitude. evolved so far, but the TGP individual does not explicitly
store this expression. Each TGP individual stores only the
1The source code for TGP is available at www.tgp.cs.ubbcluj.ro. obtained value, so far, for each fithess case. Thus a TGP



individual is: Example 1

(01, 02, 03, ..., 0m)7, Let us suppose that the operator + is selected. In this case
two parents:
where o, is the current value for thét" fithess case. Each
position in this array (a valuey) is a gene. As we said () = (py, p2, ..., pm)’ and
it before behind these values is a mathematical expressionC, = (¢, g2, ..., ¢m)"

whose evaluation has generated these values. However, we
do not store this expression. We store only the valyes  are selected and the offspring is obtained as follows:

Remark o , O=@1+q1, P2+ s Pm+ )"
The structure of an TGP individual can be easily enhanced

for storing the evolved computer program (mathematical ex- Example 2

pression). Storing the evolved expression can provide a more

easy way to analyze the results of the numerical experiments; ot s suppose that the operasim is selected. In this case
However, in this paper, we do not store the trees associatgeh parent;

with the TGP individuals.

C. Initial population C1 = (p1, P2, - pm)”

The initial population contains individuals whose values o )
have been generated by simple expressions (made uﬁs éelected and the offspring is obtained as follows:
single terminal). For instance, if an individual in the initial L . . T
population represent the expression: O = (sin(p1), sin(p2),...., sin(pim )"

E =z, 2) Insertion: This operator inserts a simple expression
(made up of a single terminal) in the population. This operator

then the corresponding TGP individual is represented as: IS useful when the population contains individuals representing
very complex expressions that cannot improve the search.

By inserting simple expressions we give a chance to the

C = (vi,v7, 0%, ..., 0]") evolutionary process to choose another direction for evolution.

Wherev;-" has been previously explained.

The quality of this individual is computed using the equatioﬁ‘ TGP Algorithm

previously described: Due to the special representation and due to the newly
m proposed genetic operators, TGP uses a special generational
Q=>_|vf = fil- algorithm which is given below:
i=1 The TGP algorithm starts by creating a random population
D. Genetic Operators of individuals. The evolutionary process is run for a fixed num-

ta;?r of generation. At each generation the following steps are

In this section the genetic operators used in conjunction wi tod until th lation is filled: With babilit
TGP are described. TGP uses two genetic operators: crossdy8Fated untii the new population 1s 1ified. With a probabiity
psert generate an offspring made up of a single terminal

and insertion. These operators are specially designed forf?ﬁ . . "
proposed TGP technique. see the Insertion operator). With a probability}z...: select

1) Crossover:The crossover is the only variation operatoPNo parents using a standard selection procedure. The parents

that creates new individuals. For crossover several individud$ recombined in order to obtain an offspring. The offspring

(the parents) and a function symbol are selected. The offsprﬁ‘l ers the population of th? nex_t gene_:ratior_L _
he standard TGP algorithm is depicted in Figure 2.

is obtained by applying the selected operator for each of the
genes of the parents.

Speaking in terms of expressions, an example of Td:P Complexity of the TGP Decoding Process

crossover is depicted in Figure 1. A very important aspect of the GP techniques is the time
From Figure 1 we can see that the parents are subtrees@mnplexity of the procedure used for computing the fitness of
the offspring. the newly created individuals.

The number of parents selected for crossover depends olhe complexity of that procedure for the standard GP is:
the number of arguments required by the selected function
symbol. Two parents have to be selected for crossover ifO(m * g),
the function symbol is a binary operator. A single parent
needs to be selected if the function symbol is a unary operatorwhere m is the number of fithess cases apds average
number of nodes in the GP tree.
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Fig. 1. An example of TGP crossover.
Standard TGP Alsorithm

S;. Randomly create the initial population P(0)
Sq. for t = 1 to NumberOfGenerations do

Sa. P(ty=o

Si. Copy the best individual from P(f) to P'(1)
S:s.  while P'(1) is not filled do

Se. with a fixed insertion probability p;..c.+ do
Create an offspring offspr made up a single terminal
S-. with a crossover probability 1 — pinser: do
Sk. Select a function symbol
Sq. Select a number of parents equal to the number of
arguments of the selected operator.
Sio. Crossover the selected parents. An offspring offspr is obtained
Sq1. Add the offspring offspr to P'(t)

Sia. endwhile
Sia. P(t+1) = P'(t)

S14. endfor
Fig. 2. Traceless Genetic Programming Algorithm.
By contrast, the TGP complexity is only Otherwise the even-parity function returN$L (Falsée [2].
In applying TGP to the even-parity function bfarguments,
O(m) the terminal sefl’ consists of thek Boolean arguments,,

dy, da, ... di_1. The function setF' consists of four two-

because the quality of a TGP individual can be computegigument primitive Boolean functions: AND, OR, NAND,
by traversing it only once. The length of a TGP individual iJOR. According to [2] the Boolean even-parity functions
m. appear to be the most difficult Boolean functions to be detected

Due to this reason we may allow TGP programs to gun via a blind random search.
times more generations in order to obtain the same complexityrhe set of fitness cases for this problem consists of the 2
as the standard GP. combinations of thek Boolean arguments. The fitness of an
TGP chromosome is the sum, over thedefithess cases, of
the Hamming distance (error) between the returned value by

The Boolean even-parity function &f Boolean arguments the TGP chromosome and the correct value of the Boolean
returnsT (True) if an even number of its arguments d@fe function. Since the standardized fitness ranges between 0 and

Ill. PARITY PROBLEM



2k, a value closer to zero is better (since the fitness is to | 190 T 200,000
minimized). an PM, 1)
Several technigues have been used in the past for solvi A1, T
; &0
the parity problems [2], [3], [8]. =
# o704 =l
IV. NUMERICAL EXPERIMENTS i rr' i)
. . . a8 T 2
Several numerical experiments using TGP are performed z &0 =
this section using the even-parity problems. General parames sq 1 2
of the TGP algorithm are given in Table I. & *E
Z 40 o
[i1]
TABLE | 8 . z
GENERAL PARAMETERS OF THETGP ALGORITHM FOR SOLVING PARITY o ?
PROBLEMS 20 B
Parameter Value 10
Insertion probability 0.05 o F_ I S I 0
Selection Binary Tournament
Function set{gateg {AND, OR, NAND, NOR} . SDN b :I:.lgn i 130 =08
Terminal set Problem inputs HIMEIET OT LAENSrations
Number of runs 100

Fig. 3. The cumulative probability of success and the computational effort
for the even-3 parity problem. Results are averaged over 100 runs.

For assessing the performance of the TGP algorithm the
computational effort an the probability of success metrics [2]
are used. The minimum effort is 33,750 and it was obtained at
The method used to assess the effectiveness of an algori@g@heration 131. We want to compare the result obtained by
has been suggested by Koza [2]. It consists of calculating theP with that obtained by standard GP.
number of chromosomes, which would have to be processedn [2] GP was used for solving the even-3 parity prob-
to give a certain probability of success. To calculate this figulem using a population of 4000 individuals evolved for 51
one must first calculate the cumulative probability of succeggnerations. The results indicated that 80,000 individuals are
P(M, i), where M represents the population size, ahthe sufficient to be processed in order to obtain a solution for this
generation number. The valug(z) represents the number ofproblem [2]. One of the obtained solutions is a tree with 45
independent runs required for a probability of success (givéades.
by z) at generation.. The quantityl(M, z, i) represents the As we noted in section II-F, the complexity of computing
minimum number of chromosomes which must be processié fitness of the TGP individuals i times lower ¢ is the
to give a probability of success at generation. The formulae number of nodes in a GP tree) than the complexity of decoding
are given by the equation (1), (2) and (}i) represents GP individuals.

the number of successful runs at generatiorand Nyotai, Due to this reason we have to divide the TGP effort (33,750)
represents the total number of runs: by 45 (the number of nodes in a GP tree for the even-3 parity
_ problem). Thus, the actual TGP effort is 750 which is with
P(M, i) = Ns(i) (1) 2 orders of magnitude better than the result obtained by GP.
’ Niotal Note that a perfect comparison between GP and TGP cannot
log(1 — 2) be made due to their different individual representation.
. og(l—=z
R(z) = ceil {} . (2)
log(1 — P(M, 1) B. Even-4 parity
I(M,i,2) = M - R(2) -i. 3) The number of fitness cases for this problen2is= 16.

For solving the even-4 parity we use a population of 100 in-
In the tables and graphs of this sectiortakes the value dividuals evolved for 500 generations. Other TGP parameters

0.99. are given in Table 1.
. The effort and the probability of success of the TGP
A. Even-3 parity algorithm are depicted in Figure 4.

The number of fitness cases for this problerads= 8. For The minimum effort is 240,000 and it was obtained at
solving the even-3 parity we use a population of 50 individuatgeneration 480.
evolved for 200 generations. Other TGP parameters are giverrhe effort spent by GP for solving the parity problem is
in Table I. 1,276,000. This number was obtained using a population of
The effort and the probability of success of the TGROOO individuals [2]. One of the solutions evolved by GP has
algorithm are depicted in Figure 3. 149 nodes.



100 % r 2,000,000 100 11 20,000,000
a0 PiM, 1) a0 (D
—#— I(M, i, Z) —*— (M, 1, Z)
a0 a0
* z * T
% 0 % % 0 w
2] 5] ) n
2 g0 ~ g 2 gD A 5
Iy f""r = I} Jl|""_ =
T 50 =) B 50 o
£ ‘,-J; r £ J,.l"‘ o
2 40 2 Z 40 i
= [ b
g o 2 g o E
£ a0 = & 30 =
£ 2
20 — 20 =
10 J"'rll 10 "r"Jr
0 S - S —_— — — 1] 0 — . "‘, . — —_— — 1]
0 100 200 300 400 S00 0 200 400 EO0 a0 1,000
Mumber of Generations Mumber of Generations

Fig. 4. The cumulative probability of success and the computational effdtig. 5. The cumulative probability of success and the computational effort
for the even-4 parity problem. Results are averaged over 100 runs. for the even-5 parity problem. Results are averaged over 100 runs.

100 200,000,000

If we want to compare the efforts spent by GP and TGP 4 PiM, i
have to divide the TGP effort (240,000) by 149 (number ﬁ H M. E)
nodes in a GP tree). Thus, we obtain the number 1610 w &0
is with almost 3 orders of magnitude better than the re w -
obtained by GP.

211

C. Even-5 parity

The number of fithess cases for this problem2is =
32. For solving the even-5 parity we use a population
500 individuals evolved for 1000 generations. Other T
parameters are given in Table I.

The effort and the probability of success of the TC 20 |
algorithm are depicted in Figure 5.

The effort is 2,417,500 and it was obtained at genera _'_,_..-—"'
967. o b—_—t—— 0
For this problem standard GP with a population of 8¢ 1,000 1,200 1,400 1,500 1,800 2,000 2,200 2,400

individuals obtained a solution in th&" run [2]. No other Mumber of ienerations
statistics were given for this problem.
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Fig. 6. The cumulative probability of success and the computational effort
for the even-6 parity problem. Results are averaged over 100 runs.

D. Even-6 parity
The number of fitness cases for this problem2fs =
64. For solving the even-6 parity we use a population of The effort and the probability of success of the TGP
1000 individuals evolved for 2500 generations. Other TGElgonthm are depicted in Figure 7.
parameters are given in Table I. The minimum effort is 245,900,000 and it was obtained at
The effort and the probability of success of the TGHPeneration 4918.
algorithm are depicted in Figure 6. .
The minimum effort is 29,136,000 and it was obtained & Even-8 parity

generation 2428. The even-8 parity problem is the most difficult problem
_ analyzed in this paper. The number of fithess cases for this

E. Even-7 parity problem is28 = 256. For solving the even-8 parity we use a
The number of fitness cases for this problem2fs = population of 5000 individuals evolved for 10000 generations.

128. For solving the even-7 parity we use a population ddther TGP parameters are given in Table I. Only 10 runs
2000 individuals evolved for 5000 generations. Other TG#&re performed for this problem. In tf" run we obtained a
parameters are given in Table I. solution.



Probability of Success

100 2,000,000,000 TABLE Il
an — P(MI ij THE AVERAGE TIME FOR OBTAINING A SOLUTION FOR THE EVENPARITY
—— (M, i, ) PROBLEM USINGTGP.
an #
g Problem Time (seconds)
it a even-3 0.2
b even-4 0.9
&0 o even-5 3.2
=0 o even-6 19.3
# -g even-7 92.5
40 =
[ox]
=
30 2
= VI. LIMITATIONS OF THE PROPOSED APPROACH
20 There could be a problem with the length of the program
10 evolved by TGP. The number of gates in offspring is the sum
0 0 of the number of gates in parents + 1. In the case of binary
2500 3000 3500 4000 4500 5000 pperators the num_ber of gates in a TGP chromosome might
Mumber of Senerations increase exponentially.

This problem could be avoided if the selection process takes

Fig. 7. The cumulative probability of success and the computational effdAto account the number of gates of the chosen individuals.
for the even-7 parity problem. Results are averaged over 100 runs.
VII. CONCLUSIONS

A new evolutionary technique called Traceless Genetic
V. SUMMARIZED RESULTS Programming has been proposed in this paper. TGP uses a

Summarized results of applying Traceless Genetic PrograffgW individual representation, new genetic operators and a

ming for solving even-parity problems are given in Table 11.SPECIfic evolutionary algorithm.
TGP has been used for evolving digital circuits for the

TABLE Il even parity problems. Numerical experiments have shown that
SUMMARIZED RESULTS FOR SOLVING THE EVENPARITY PROBLEM UsiNg TGP was able to evolve very fast a solution for up to even-
TGP. S COND COLUMN INDICATES THE POPULATION SIZE USED FOR 8 parity problem. Note that the standard GP evolved (within
SOLVING THE PROBLEM THE COMPUTATIONAL EFFORT IS GIVEN INTHE @ feasonable time frame) a solution for up to even-5 parity
374 COLUMN. THE NUMBERS IN THE4'® COLUMN INDICATE THE problem.

GENERATION WHERE THE MINIMUM EFFORT WAS OBTAINED
VIIl. FURTHER WORK

Problem Pop Size Effort Generation Further effort yvill be spent_ for imprpving the _proposed_

even-3 50 33,750 131 Traceless Genetic Programming technique. For instance, in
e"e”"s‘ 288 24401’205000 32(7) [9] a Sub-machine code technique was used for improving the
even- , s . . . .

oven6 1000 29,136,000 5078 performancg ot the GP technique. This kind of improvement
even-7 2000 245,900,000 | 4918 can be applied for TGP too.

In [10] an extended, unbiased set of 16 gates was used
for solving the even-parity problems. Numerical experiments
Table I ShOWS tha.t TGP iS able to Solve the eVen'pari%own [10] that GP was able to solve up to even-22 panty
problems very well. Genetic Programming without ADF wagstance using the considered set of gates. Further numerical
able to solve instances up to even-5 parity problem withingperiments with TGP will include the use of the extended set
reasonable time frame and using a reasonable population. Ngtey| possible 16 gates with 2 inputs.
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